{"title":"OPTIMAL TREATMENT STRATEGIES USING DENDRITIC CELL VACCINATION FOR A TUMOR MODEL WITH PARAMETER IDENTIFIABILITY","authors":"S. Khajanchi, J. Mondal, Pankaj Tiwari","doi":"10.1142/s0218339023500171","DOIUrl":null,"url":null,"abstract":"Immunotherapy has become a rapidly developing approach in the treatment of cancer. Cancer immunotherapy aims at promoting the immune system response to react against the tumor. In view of this, we develop a mathematical model for immune–tumor interplays with immunotherapeutic drug, and strategies for optimally administering treatment. The tumor–immune dynamics are given by a system of five coupled nonlinear ordinary differential equations which represent the interaction among tumor-specific CD4+T cells, tumor-specific CD8+T cells, tumor cells, dendritic cells and the immuno-stimulatory cytokine interleukin-2 (IL-2), extended through the addition of a control function describing the application of a dendritic cell vaccination. Dynamical behavior of the system is studied from the analytical as well as numerical points of view. The main aim is to investigate the treatment regimens which minimize the tumor cell burden and the toxicity of dendritic cell vaccination. Our numerical simulations demonstrate that the optimal treatment strategies using dendritic cell vaccination reduce the tumor cell burden and increase the cell count of CD4+T cells, CD8+T cells, dendritic cells and IL-2. The most influential parameters having significant impacts on the tumor cells are identified by employing the approach of global sensitivity analysis.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500171","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Immunotherapy has become a rapidly developing approach in the treatment of cancer. Cancer immunotherapy aims at promoting the immune system response to react against the tumor. In view of this, we develop a mathematical model for immune–tumor interplays with immunotherapeutic drug, and strategies for optimally administering treatment. The tumor–immune dynamics are given by a system of five coupled nonlinear ordinary differential equations which represent the interaction among tumor-specific CD4+T cells, tumor-specific CD8+T cells, tumor cells, dendritic cells and the immuno-stimulatory cytokine interleukin-2 (IL-2), extended through the addition of a control function describing the application of a dendritic cell vaccination. Dynamical behavior of the system is studied from the analytical as well as numerical points of view. The main aim is to investigate the treatment regimens which minimize the tumor cell burden and the toxicity of dendritic cell vaccination. Our numerical simulations demonstrate that the optimal treatment strategies using dendritic cell vaccination reduce the tumor cell burden and increase the cell count of CD4+T cells, CD8+T cells, dendritic cells and IL-2. The most influential parameters having significant impacts on the tumor cells are identified by employing the approach of global sensitivity analysis.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.