{"title":"A real-time approach for failure detection in material extrusion process based on artificial neural network","authors":"Wanbin Pan, Hongyi Jiang, Shufang Wang, W. Lu, Weijuan Cao, Zhenlei Weng","doi":"10.1108/rpj-03-2022-0072","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to detect the printing failures (such as warpage and collapse) in material extrusion (MEX) process effectively and timely to reduce the waste of printing time, energy and material.\n\n\nDesign/methodology/approach\nThe approach is designed based on the frequently observed fact that printing failures are accompanied by abnormal material phenomena occurring close to the nozzle. To effectively and timely capture the phenomena near the nozzle, a camera is delicately installed on a typical MEX printer. Then, aided by the captured phenomena (images), a smart printing failure predictor is built based on the artificial neural network (ANN). Finally, based on the predictor, the printing failures, as well as their types, can be effectively detected from the images captured by the camera in real-time.\n\n\nFindings\nExperiments show that printing failures can be detected timely with an accuracy of more than 98% on average. Comparisons in methodology demonstrate that this approach has advantages in real-time printing failure detection in MEX.\n\n\nOriginality/value\nA novel real-time approach for failure detection is proposed based on ANN. The following characteristics make the approach have a great potential to be implemented easily and widely: (1) the scheme designed to capture the phenomena near the nozzle is simple, low-cost, and effective; and (2) the predictor can be conveniently extended to detect more types of failures by using more abnormal material phenomena that are occurring close to the nozzle.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-03-2022-0072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to detect the printing failures (such as warpage and collapse) in material extrusion (MEX) process effectively and timely to reduce the waste of printing time, energy and material.
Design/methodology/approach
The approach is designed based on the frequently observed fact that printing failures are accompanied by abnormal material phenomena occurring close to the nozzle. To effectively and timely capture the phenomena near the nozzle, a camera is delicately installed on a typical MEX printer. Then, aided by the captured phenomena (images), a smart printing failure predictor is built based on the artificial neural network (ANN). Finally, based on the predictor, the printing failures, as well as their types, can be effectively detected from the images captured by the camera in real-time.
Findings
Experiments show that printing failures can be detected timely with an accuracy of more than 98% on average. Comparisons in methodology demonstrate that this approach has advantages in real-time printing failure detection in MEX.
Originality/value
A novel real-time approach for failure detection is proposed based on ANN. The following characteristics make the approach have a great potential to be implemented easily and widely: (1) the scheme designed to capture the phenomena near the nozzle is simple, low-cost, and effective; and (2) the predictor can be conveniently extended to detect more types of failures by using more abnormal material phenomena that are occurring close to the nozzle.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation