Guangyao Gao , Yue Liang , Jianbo Liu , David Dunkerley , Bojie Fu
{"title":"A modified RUSLE model to simulate soil erosion under different ecological restoration types in the loess hilly area","authors":"Guangyao Gao , Yue Liang , Jianbo Liu , David Dunkerley , Bojie Fu","doi":"10.1016/j.iswcr.2023.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Soil erosion is mainly affected by the rainfall characteristics and land cover conditions, and soil erosion modelling is important for evaluating land degradation status. The revised Universal Soil Loss Equation (RUSLE) have been widely used to simulate soil loss rate. Previous studies usually considered the general rainfall characteristics and direct effect of runoff with the event rainfall erosivity factor (<em>R</em><sub><em>e</em></sub>) to produce event soil loss (<em>A</em><sub><em>e</em></sub>), whereas the fluctuation of rainfall intensity within the natural rainfall profile has rarely been considered. In this study, the relative amplitude of rainfall intensity (<em>R</em><sub>am</sub>) was proposed to generalize the features of rainfall intensity fluctuation under natural rainfall, and it was incorporated in a new <em>R</em><sub><em>e</em></sub> (<em>R</em><sub><em>e</em></sub>=<em>R</em><sub>am</sub>EI<sub>30</sub>) to develop the RUSLE model considering the fluctuation of rainfall intensity (RUSLE-F). The simulation performance of RUSLE-F model was compared with RUSLE-M1 model (<em>R</em><sub><em>e</em></sub>=EI<sub>30</sub>) and RUSLE-M2 model (<em>R</em><sub><em>e</em></sub>=<em>Q</em><sub>R</sub>EI<sub>30</sub>) using observations in field plots of grassland, orchard and shrubland during 2011–2016 in a loess hilly catchment of China. The results indicated that the relationship between <em>A</em><sub><em>e</em></sub> and <em>R</em><sub>am</sub>EI<sub>30</sub> was well described by a power function with higher <em>R</em><sup>2</sup> values (0.82–0.96) compared to <em>Q</em><sub>R</sub>EI<sub>30</sub> (0.80–0.88) and EI<sub>30</sub> (0.24–0.28). The RUSLE-F model much improved the accuracy in simulating <em>A</em><sub><em>e</em></sub> with higher NSE (0.55–0.79 vs −0.11∼0.54) and lower RMSE (0.82–1.67 vs 1.04–2.49) than RUSLE-M1 model. Furthermore, the RUSLE-F model had better simulation performance than RUSLE-M2 model under grassland and orchard, and more importantly the rainfall data in the RUSLE-F model can be easily obtained compared to the measurements or estimations of runoff data required by the RUSLE-M2 model. This study highlighted the paramount importance of rainfall intensity fluctuation in event soil loss prediction, and the RUSLE-F model contributed to the further development of USLE/RUSLE family of models.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 2","pages":"Pages 258-266"},"PeriodicalIF":7.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000692/pdfft?md5=f008545a21fad2045059c33037bac177&pid=1-s2.0-S2095633923000692-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000692","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil erosion is mainly affected by the rainfall characteristics and land cover conditions, and soil erosion modelling is important for evaluating land degradation status. The revised Universal Soil Loss Equation (RUSLE) have been widely used to simulate soil loss rate. Previous studies usually considered the general rainfall characteristics and direct effect of runoff with the event rainfall erosivity factor (Re) to produce event soil loss (Ae), whereas the fluctuation of rainfall intensity within the natural rainfall profile has rarely been considered. In this study, the relative amplitude of rainfall intensity (Ram) was proposed to generalize the features of rainfall intensity fluctuation under natural rainfall, and it was incorporated in a new Re (Re=RamEI30) to develop the RUSLE model considering the fluctuation of rainfall intensity (RUSLE-F). The simulation performance of RUSLE-F model was compared with RUSLE-M1 model (Re=EI30) and RUSLE-M2 model (Re=QREI30) using observations in field plots of grassland, orchard and shrubland during 2011–2016 in a loess hilly catchment of China. The results indicated that the relationship between Ae and RamEI30 was well described by a power function with higher R2 values (0.82–0.96) compared to QREI30 (0.80–0.88) and EI30 (0.24–0.28). The RUSLE-F model much improved the accuracy in simulating Ae with higher NSE (0.55–0.79 vs −0.11∼0.54) and lower RMSE (0.82–1.67 vs 1.04–2.49) than RUSLE-M1 model. Furthermore, the RUSLE-F model had better simulation performance than RUSLE-M2 model under grassland and orchard, and more importantly the rainfall data in the RUSLE-F model can be easily obtained compared to the measurements or estimations of runoff data required by the RUSLE-M2 model. This study highlighted the paramount importance of rainfall intensity fluctuation in event soil loss prediction, and the RUSLE-F model contributed to the further development of USLE/RUSLE family of models.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research