Dong-sheng Zhao, Liangliang Wu, Tianfei Zhang, Lele Kong, Yujun Liu
{"title":"Effect of Preheating on Hot Cracking Susceptibility in Pulsed Laser Welding of Invar Alloy","authors":"Dong-sheng Zhao, Liangliang Wu, Tianfei Zhang, Lele Kong, Yujun Liu","doi":"10.5957/jspd.01200002","DOIUrl":null,"url":null,"abstract":"Hot cracking is a serious problem in welding of Invar alloy. The weld hot cracking susceptibility of Invar was evaluated using pulsed laser welding on fish-bone sheet experiment. The pulse wave consisted of preheating pulse and welding pulse. Hot cracks that formed along the grain boundary propagated from the weld upper surface to the inside. The experiments show that adding a preheating pulse can effectively reduce the hot cracking susceptibility of Invar alloy. Finite Element Modeling (FEM) calculations and experimental measurement results show that the welding temperature gradient and cooling rate decrease with increasing preheating pulse duration. However, as the preheating pulse duration increases, the hot cracking susceptibility of the Invar alloy does not decrease all the time, but decreases first and then increases. This is because the increase of heat input leads to the increase of shrinkage plastic strain when the preheating pulse duration increases. The maximum tensile strength of the butt welded joint of the Invar alloy was 467.3 MPa, which is 92.3% of the base metal when the preheating pulse duration is 3 ms.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.01200002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1
Abstract
Hot cracking is a serious problem in welding of Invar alloy. The weld hot cracking susceptibility of Invar was evaluated using pulsed laser welding on fish-bone sheet experiment. The pulse wave consisted of preheating pulse and welding pulse. Hot cracks that formed along the grain boundary propagated from the weld upper surface to the inside. The experiments show that adding a preheating pulse can effectively reduce the hot cracking susceptibility of Invar alloy. Finite Element Modeling (FEM) calculations and experimental measurement results show that the welding temperature gradient and cooling rate decrease with increasing preheating pulse duration. However, as the preheating pulse duration increases, the hot cracking susceptibility of the Invar alloy does not decrease all the time, but decreases first and then increases. This is because the increase of heat input leads to the increase of shrinkage plastic strain when the preheating pulse duration increases. The maximum tensile strength of the butt welded joint of the Invar alloy was 467.3 MPa, which is 92.3% of the base metal when the preheating pulse duration is 3 ms.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.