Ply-Blocking Phenomenon and Hole Size Effects in Modeling Progressive Damage in FRP Laminates

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL
Vishwas Divse, S. Joshi, D. Marla
{"title":"Ply-Blocking Phenomenon and Hole Size Effects in Modeling Progressive Damage in FRP Laminates","authors":"Vishwas Divse, S. Joshi, D. Marla","doi":"10.1115/1.4063075","DOIUrl":null,"url":null,"abstract":"\n This work presents a 3D progressive damage model based on Puck's failure theory and linear damage evolution in FRP laminates. It includes shear non-linearity, in-situ strengths, equivalent stress-strain, and mixed-mode fracture energy and implemented in Abaqus/explicit through VUMAT subroutine. Various test cases were performed to validate the model and demonstrate its applications. The shear non-linearity test shows that transverse compression retards matrix micro-cracking while transverse tension accelerates it. The open hole tension (OHT) test of laminates shows that delamination initiates around the holes and free edges, spreads the most, and propagates in different directions at different interfaces. Later, inter-fiber damage in 45' or -45' plies initiates and spreads at a slight inclination to the tip of the hole. Lastly, fiber damage in 0' plies initiates at the tip of the hole, spreads the least, and propagates perpendicular to the loading direction. The ply-blocked laminates show around 30% higher strength and fracture strain than non-ply-blocked laminate due to delay in damage propagation, and are less sensitive to hole size. Accordingly, their OHT strength reduces by 14.3% as opposed to 21.14% in the non-ply-blocked laminates, when the hole size increases from 6 to 9 mm. The damage location, magnitude and propagation modes were corroborated with experimental findings in literature.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4063075","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a 3D progressive damage model based on Puck's failure theory and linear damage evolution in FRP laminates. It includes shear non-linearity, in-situ strengths, equivalent stress-strain, and mixed-mode fracture energy and implemented in Abaqus/explicit through VUMAT subroutine. Various test cases were performed to validate the model and demonstrate its applications. The shear non-linearity test shows that transverse compression retards matrix micro-cracking while transverse tension accelerates it. The open hole tension (OHT) test of laminates shows that delamination initiates around the holes and free edges, spreads the most, and propagates in different directions at different interfaces. Later, inter-fiber damage in 45' or -45' plies initiates and spreads at a slight inclination to the tip of the hole. Lastly, fiber damage in 0' plies initiates at the tip of the hole, spreads the least, and propagates perpendicular to the loading direction. The ply-blocked laminates show around 30% higher strength and fracture strain than non-ply-blocked laminate due to delay in damage propagation, and are less sensitive to hole size. Accordingly, their OHT strength reduces by 14.3% as opposed to 21.14% in the non-ply-blocked laminates, when the hole size increases from 6 to 9 mm. The damage location, magnitude and propagation modes were corroborated with experimental findings in literature.
FRP层压板渐进损伤模型中的层粘连现象和孔径效应
本文基于Puck失效理论和FRP层压板的线性损伤演化,提出了一个三维渐进损伤模型。它包括剪切非线性、原位强度、等效应力-应变和混合模式断裂能,并通过VUMAT子程序在Abaqus/显式中实现。进行了各种测试案例来验证模型并演示其应用。剪切非线性试验表明,横向压缩延缓了基体的微裂纹,而横向拉伸加速了基体的微观裂纹。层压板的开孔拉伸试验表明,分层起始于孔洞和自由边缘,扩散最大,并在不同界面向不同方向传播。随后,45’或-45’层中的纤维间损伤开始并以轻微的倾斜向孔的尖端扩展。最后,0’层中的纤维损伤从孔的尖端开始,扩散最小,并垂直于载荷方向传播。由于损伤传播的延迟,层合板显示出比非层合板高约30%的强度和断裂应变,并且对孔尺寸不太敏感。因此,当孔尺寸从6mm增加到9mm时,其OHT强度降低了14.3%,而非层合板的OHT强度为21.14%。文献中的实验结果证实了损伤位置、程度和传播模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信