A Bayesian generalised extreme value model to estimate real-time pedestrian crash risks at signalised intersections using artificial intelligence-based video analytics
IF 12.5 1区 工程技术Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
{"title":"A Bayesian generalised extreme value model to estimate real-time pedestrian crash risks at signalised intersections using artificial intelligence-based video analytics","authors":"Yasir Ali , Md. Mazharul Haque , Fred Mannering","doi":"10.1016/j.amar.2022.100264","DOIUrl":null,"url":null,"abstract":"<div><p>Pedestrians represent a vulnerable road user group at signalised intersections. As such, properly estimating pedestrian crash risk at discrete short intervals is important for real-time safety management. This study proposes a novel real-time vehicle-pedestrian crash risk modelling framework for signalised intersections. At the core of this framework, a Bayesian Generalised Extreme Value modelling approach is employed to estimate crash risk in real-time from traffic conflicts captured by post encroachment time. A Block Maxima sampling approach, corresponding to a Generalised Extreme Value distribution, is used to identify pedestrian conflicts at the traffic signal cycle level. Several signal-level covariates are used to capture the time-varying heterogeneity of traffic extremes, and the crash risk of different signal cycles is also addressed within the Bayesian framework. The proposed framework is operationalised using a total of 144 hours of traffic movement video data from three signalised intersections in Queensland, Australia. To obtain signal cycle-level covariates, an automated covariate extraction algorithm is used that fuses three data sources (trajectory database from the video feed, traffic conflict database, and signal timing database) to obtain various covariates to explain time-varying crash risk across different cycles. Results show that the model provides a reasonable estimate of historical crash records at the study sites. Utilising the fitted generalised extreme value distribution, the proposed model provides real-time crash estimates at a signal cycle level and can differentiate between safe and risky signal cycles. The real-time crash risk model also helps understand the differential crash risk of pedestrians at a signalised intersection across different periods of the day. The findings of this study demonstrate the potential for the proposed real-time framework in estimating the vehicle-pedestrian crash risk at the signal cycle level, allowing proactive safety management and the development of real-time risk mitigation strategies for pedestrians.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"38 ","pages":"Article 100264"},"PeriodicalIF":12.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665722000537","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 16
Abstract
Pedestrians represent a vulnerable road user group at signalised intersections. As such, properly estimating pedestrian crash risk at discrete short intervals is important for real-time safety management. This study proposes a novel real-time vehicle-pedestrian crash risk modelling framework for signalised intersections. At the core of this framework, a Bayesian Generalised Extreme Value modelling approach is employed to estimate crash risk in real-time from traffic conflicts captured by post encroachment time. A Block Maxima sampling approach, corresponding to a Generalised Extreme Value distribution, is used to identify pedestrian conflicts at the traffic signal cycle level. Several signal-level covariates are used to capture the time-varying heterogeneity of traffic extremes, and the crash risk of different signal cycles is also addressed within the Bayesian framework. The proposed framework is operationalised using a total of 144 hours of traffic movement video data from three signalised intersections in Queensland, Australia. To obtain signal cycle-level covariates, an automated covariate extraction algorithm is used that fuses three data sources (trajectory database from the video feed, traffic conflict database, and signal timing database) to obtain various covariates to explain time-varying crash risk across different cycles. Results show that the model provides a reasonable estimate of historical crash records at the study sites. Utilising the fitted generalised extreme value distribution, the proposed model provides real-time crash estimates at a signal cycle level and can differentiate between safe and risky signal cycles. The real-time crash risk model also helps understand the differential crash risk of pedestrians at a signalised intersection across different periods of the day. The findings of this study demonstrate the potential for the proposed real-time framework in estimating the vehicle-pedestrian crash risk at the signal cycle level, allowing proactive safety management and the development of real-time risk mitigation strategies for pedestrians.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.