{"title":"An Empirical Evaluation of Large Dynamic Covariance Models in Portfolio Value-at-Risk Estimation","authors":"K. Law, W. Li, P. Yu","doi":"10.21314/jrmv.2020.221","DOIUrl":null,"url":null,"abstract":"The estimation of portfolio value-at-risk (VaR) requires a good estimate of the covariance matrix. As it is well known that a sample covariance matrix based on some historical rolling window is noisy and is a poor estimate for the high-dimensional population covariance matrix, to estimate the conditional portfolio VaR we develop a framework using the dynamic conditional covariance model, within which various de-noising tools are employed for the estimation of the unconditional covariance target. Various de-noising treatments in our study include shrinkage methods, random matrix theory methods and regularization methods. We validate the model empirically by using various coverage tests and loss function measures and discover that the choice of de-noising treatments for the covariance target plays a critical role in measuring the accuracy of the dynamic portfolio VaR estimates. In our large-scale empirical evaluation of de-noising tools, the regularization methods seem to produce the poorest VaR estimates under various coverage tests and loss function measures, while the shrinkage methods and the random matrix theory methods produce comparable results.","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Model Validation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jrmv.2020.221","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
The estimation of portfolio value-at-risk (VaR) requires a good estimate of the covariance matrix. As it is well known that a sample covariance matrix based on some historical rolling window is noisy and is a poor estimate for the high-dimensional population covariance matrix, to estimate the conditional portfolio VaR we develop a framework using the dynamic conditional covariance model, within which various de-noising tools are employed for the estimation of the unconditional covariance target. Various de-noising treatments in our study include shrinkage methods, random matrix theory methods and regularization methods. We validate the model empirically by using various coverage tests and loss function measures and discover that the choice of de-noising treatments for the covariance target plays a critical role in measuring the accuracy of the dynamic portfolio VaR estimates. In our large-scale empirical evaluation of de-noising tools, the regularization methods seem to produce the poorest VaR estimates under various coverage tests and loss function measures, while the shrinkage methods and the random matrix theory methods produce comparable results.
期刊介绍:
As monetary institutions rely greatly on economic and financial models for a wide array of applications, model validation has become progressively inventive within the field of risk. The Journal of Risk Model Validation focuses on the implementation and validation of risk models, and aims to provide a greater understanding of key issues including the empirical evaluation of existing models, pitfalls in model validation and the development of new methods. We also publish papers on back-testing. Our main field of application is in credit risk modelling but we are happy to consider any issues of risk model validation for any financial asset class. The Journal of Risk Model Validation considers submissions in the form of research papers on topics including, but not limited to: Empirical model evaluation studies Backtesting studies Stress-testing studies New methods of model validation/backtesting/stress-testing Best practices in model development, deployment, production and maintenance Pitfalls in model validation techniques (all types of risk, forecasting, pricing and rating)