Elastic trend filtering

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Juyoung Jeong, Y. Jung, S. Yun
{"title":"Elastic trend filtering","authors":"Juyoung Jeong, Y. Jung, S. Yun","doi":"10.1515/ijnsns-2021-0237","DOIUrl":null,"url":null,"abstract":"Abstract Trend filtering aims to estimate underlying trends in time series data, which is necessary to investigate data in a variety of disciplines. We propose a new method called elastic trend filtering. The proposed method combines ℓ 2 and ℓ 1 norm penalties to exploit the benefits and strengths of Hodrick–Prescott and ℓ 1 trend filterings. We apply the alternating direction method of multipliers for its efficient computation and numerical experiments show the soundness and efficiency of the proposed method. We further apply the proposed method to graph cases for potential applications and suggest a trend filtering for its variance estimate.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"939 - 949"},"PeriodicalIF":1.4000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0237","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Trend filtering aims to estimate underlying trends in time series data, which is necessary to investigate data in a variety of disciplines. We propose a new method called elastic trend filtering. The proposed method combines ℓ 2 and ℓ 1 norm penalties to exploit the benefits and strengths of Hodrick–Prescott and ℓ 1 trend filterings. We apply the alternating direction method of multipliers for its efficient computation and numerical experiments show the soundness and efficiency of the proposed method. We further apply the proposed method to graph cases for potential applications and suggest a trend filtering for its variance estimate.
弹性趋势滤波
趋势过滤的目的是估计时间序列数据的潜在趋势,这是研究各种学科数据所必需的。我们提出了一种新的方法——弹性趋势滤波。该方法结合了l2范数惩罚和l1范数惩罚,利用了Hodrick-Prescott和l1趋势滤波的优点和优势。采用乘法器的交替方向法计算效率高,数值实验证明了该方法的有效性。我们进一步将所提出的方法应用于潜在应用的图形案例,并建议对其方差估计进行趋势过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信