Histochemical Staining of Acetylcholinesterase in Carnolian Honeybee (Apis mellifera carnica) Brain after Chronic Exposure to Organophosphate Diazinon

IF 0.7 4区 农林科学 Q4 ENTOMOLOGY
G. Glavan
{"title":"Histochemical Staining of Acetylcholinesterase in Carnolian Honeybee (Apis mellifera carnica) Brain after Chronic Exposure to Organophosphate Diazinon","authors":"G. Glavan","doi":"10.2478/jas-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract Organophosphate insecticides are known to inhibit the activity of enzyme acetylcholinesterase. They affect olfactory learning and memory formation in honeybees. These insecticides cause mushroom body inactivation in honeybees, but their influence on other brain regions involved in olfactory perception and memory is unknown. The goal of this study was to study the effects of organophosphate insecticide diazinon on carnolian honeybee (Apis mellifera carnica) acetylcholinesterase activity in the olfactory brain regions of antennal lobe, mushroom body and lateral procerebrum (lateral horn). The lamina, medulla and lobula of optic lobes were also analyzed. The level of acetylcholinesterase activity was visualized using the histochemical staining method. Densitometric analysis of histochemical signals indicated that diazinon inhibited acetylcholinesterase activity only in the lip of calyces of mushroom body, but not in other analyzed olfactory regions, antennal lobe and lateral procerebrum. The visual brain system optic lobes were also unaffected. This is in accordance with the literature reporting that mushroom body is the main brain center for olfactory learning and memory formation in honeybees.","PeriodicalId":14941,"journal":{"name":"Journal of Apicultural Science","volume":"64 1","pages":"123 - 130"},"PeriodicalIF":0.7000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Apicultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/jas-2020-0003","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Organophosphate insecticides are known to inhibit the activity of enzyme acetylcholinesterase. They affect olfactory learning and memory formation in honeybees. These insecticides cause mushroom body inactivation in honeybees, but their influence on other brain regions involved in olfactory perception and memory is unknown. The goal of this study was to study the effects of organophosphate insecticide diazinon on carnolian honeybee (Apis mellifera carnica) acetylcholinesterase activity in the olfactory brain regions of antennal lobe, mushroom body and lateral procerebrum (lateral horn). The lamina, medulla and lobula of optic lobes were also analyzed. The level of acetylcholinesterase activity was visualized using the histochemical staining method. Densitometric analysis of histochemical signals indicated that diazinon inhibited acetylcholinesterase activity only in the lip of calyces of mushroom body, but not in other analyzed olfactory regions, antennal lobe and lateral procerebrum. The visual brain system optic lobes were also unaffected. This is in accordance with the literature reporting that mushroom body is the main brain center for olfactory learning and memory formation in honeybees.
有机磷二嗪对香蜂脑乙酰胆碱酯酶的组织化学染色
摘要众所周知,有机磷杀虫剂能抑制乙酰胆碱酯酶的活性。它们影响蜜蜂的嗅觉学习和记忆形成。这些杀虫剂会导致蜜蜂蘑菇体失活,但它们对其他涉及嗅觉感知和记忆的大脑区域的影响尚不清楚。本研究的目的是研究有机磷杀虫剂二嗪农对香蜂触角叶、蘑菇体和侧脑室(侧角)嗅脑区乙酰胆碱酯酶活性的影响。还对视叶的椎板、髓质和小叶进行了分析。用组织化学染色法观察乙酰胆碱酯酶活性水平。组织化学信号的密度分析表明,二嗪农对乙酰胆碱酯酶活性的抑制作用仅在蘑菇体的杯状唇,而在其他分析的嗅觉区域、触角叶和侧脑过程中没有。视觉脑系统视叶也未受影响。这与文献报道一致,蘑菇体是蜜蜂嗅觉学习和记忆形成的主要大脑中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: The Journal of Apicultural Science is a scientific, English-language journal that publishes both original research articles and review papers covering all aspects of the life of bees (superfamily Apoidea) and broadly defined apiculture. The main subject areas include: -bee biology- bee genetics- bee breeding- pathology and toxicology- pollination and bee botany- bee products- management, technologies, and economy- solitary bees and bumblebees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信