Hyperbolic torsion polynomials of pretzel knots

IF 0.5 4区 数学 Q3 MATHEMATICS
Takayuki Morifuji, Anh T. Tran
{"title":"Hyperbolic torsion polynomials of pretzel knots","authors":"Takayuki Morifuji, Anh T. Tran","doi":"10.1515/advgeom-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we explicitly calculate the highest degree term of the hyperbolic torsion polynomial of an infinite family of pretzel knots. This gives supporting evidence for a conjecture of Dunfield, Friedl and Jackson that the hyperbolic torsion polynomial determines the genus and fiberedness of a hyperbolic knot. The verification of the genus part of the conjecture for this family of knots also follows from the work of Agol and Dunfield [1] or Porti [19].","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"21 1","pages":"265 - 272"},"PeriodicalIF":0.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we explicitly calculate the highest degree term of the hyperbolic torsion polynomial of an infinite family of pretzel knots. This gives supporting evidence for a conjecture of Dunfield, Friedl and Jackson that the hyperbolic torsion polynomial determines the genus and fiberedness of a hyperbolic knot. The verification of the genus part of the conjecture for this family of knots also follows from the work of Agol and Dunfield [1] or Porti [19].
椒盐卷饼结的双曲扭转多项式
摘要在本文中,我们明确地计算了一个无限大的椒盐卷饼节族的双曲扭转多项式的最高阶项。这为Dunfield、Friedl和Jackson的一个猜想提供了支持证据,即双曲扭转多项式决定了双曲结的亏格性和纤维化。这个结族猜想的属部分的验证也来自Agol和Dunfield[1]或Porti[19]的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信