{"title":"Hyperbolic torsion polynomials of pretzel knots","authors":"Takayuki Morifuji, Anh T. Tran","doi":"10.1515/advgeom-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we explicitly calculate the highest degree term of the hyperbolic torsion polynomial of an infinite family of pretzel knots. This gives supporting evidence for a conjecture of Dunfield, Friedl and Jackson that the hyperbolic torsion polynomial determines the genus and fiberedness of a hyperbolic knot. The verification of the genus part of the conjecture for this family of knots also follows from the work of Agol and Dunfield [1] or Porti [19].","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we explicitly calculate the highest degree term of the hyperbolic torsion polynomial of an infinite family of pretzel knots. This gives supporting evidence for a conjecture of Dunfield, Friedl and Jackson that the hyperbolic torsion polynomial determines the genus and fiberedness of a hyperbolic knot. The verification of the genus part of the conjecture for this family of knots also follows from the work of Agol and Dunfield [1] or Porti [19].
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.