Influence of Spiral Angle on the Performance of Spiral Oil Wedge Sleeve Bearing

IF 0.9 Q4 ENGINEERING, MECHANICAL
Li-li Wang, Q. Zeng, Xin Zhang
{"title":"Influence of Spiral Angle on the Performance of Spiral Oil Wedge Sleeve Bearing","authors":"Li-li Wang, Q. Zeng, Xin Zhang","doi":"10.1155/2018/5051794","DOIUrl":null,"url":null,"abstract":"Spiral angel is an important structure parameter of spiral oil wedge sleeve bearing, which produces greater impact on bearing performance. Based on JFO boundary condition, the generalized Reynolds equations considering four slip conditions are established. Using the concept of partial derivatives, stiffness and damping coefficients of sleeve bearing are calculated. The results show that carrying capacity and friction drag of oil film decrease, temperature rise decreases first and then increases, and end leakage rate, stiffness, and damping coefficients generally increase first and then decrease with the increase of spiral angle. The carrying capacity, friction drag, temperature rise, stiffness, and damping coefficients are smaller and the end leakage rate is higher considering wall slip and JFO condition compared with reckoning with no slip and Reynolds boundary condition.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5051794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/5051794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spiral angel is an important structure parameter of spiral oil wedge sleeve bearing, which produces greater impact on bearing performance. Based on JFO boundary condition, the generalized Reynolds equations considering four slip conditions are established. Using the concept of partial derivatives, stiffness and damping coefficients of sleeve bearing are calculated. The results show that carrying capacity and friction drag of oil film decrease, temperature rise decreases first and then increases, and end leakage rate, stiffness, and damping coefficients generally increase first and then decrease with the increase of spiral angle. The carrying capacity, friction drag, temperature rise, stiffness, and damping coefficients are smaller and the end leakage rate is higher considering wall slip and JFO condition compared with reckoning with no slip and Reynolds boundary condition.
螺旋角对螺旋油楔套轴承性能的影响
螺旋角是螺旋油楔套轴承的一个重要结构参数,对轴承性能影响较大。基于JFO边界条件,建立了考虑四种滑移条件的广义雷诺方程。利用偏导数的概念,计算了套筒轴承的刚度和阻尼系数。结果表明,随着螺旋角的增大,油膜的承载能力和摩擦阻力减小,温升先减小后增大,端部泄漏率、刚度和阻尼系数一般先增大后减小。与无滑移和雷诺边界条件下的计算相比,考虑壁面滑移和JFO条件下的承载力、摩擦阻力、温升、刚度和阻尼系数较小,端部泄漏率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信