Comparative Analysis of Novel Iron Oxide Nanoparticles Synthesized by Different Approaches with Evaluation of Their Antibacterial Activities

Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Comparative Analysis of Novel Iron Oxide Nanoparticles Synthesized by Different Approaches with Evaluation of Their Antibacterial Activities","authors":"","doi":"10.33263/briac134.317","DOIUrl":null,"url":null,"abstract":"In this study, stable novel iron oxide nanoparticles (IO-NPs) were synthesized via chemical and green methods. In the chemical method, p-aminobenzoic acid (AB), diacetyl monoxime (DIA), and adenosine 5-monophosphate disodium (AD) were used as stabilized ligands, whereas the extract of Teucrium apollinis was used in the green synthesis method. The effect of these stabilized ligands on the size, stability, and antibacterial activity of IO-NPs was carried out. The synthesized IO-NPs were characterized using UV-Visible absorption spectroscopy (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and attenuated Fourier transform infrared (ATR-FTIR). IO-NPs offered spherical shapes with small sizes (5 nm, 6 nm, 8 nm, and 34 nm) for IO-NPs functionalized by DIA, AD, AB, and Teucrium apollinis, respectively. This study shows a relationship between the type of NPs and Pseudomonas aeruginosa growth. The IO-NP functionalized by plant extract has a higher antibacterial effect than IO-NPs chemically synthesized. Because it has more infinity toward bacteria cells than other NP, it has a high ability to penetrate the membrane of bacterial cells. The use of Teucrium apollinis extract could be an eco-friendly way to synthesize IO-NP that offers a novel and potential alternative to chemically synthesized IO-NP.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, stable novel iron oxide nanoparticles (IO-NPs) were synthesized via chemical and green methods. In the chemical method, p-aminobenzoic acid (AB), diacetyl monoxime (DIA), and adenosine 5-monophosphate disodium (AD) were used as stabilized ligands, whereas the extract of Teucrium apollinis was used in the green synthesis method. The effect of these stabilized ligands on the size, stability, and antibacterial activity of IO-NPs was carried out. The synthesized IO-NPs were characterized using UV-Visible absorption spectroscopy (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and attenuated Fourier transform infrared (ATR-FTIR). IO-NPs offered spherical shapes with small sizes (5 nm, 6 nm, 8 nm, and 34 nm) for IO-NPs functionalized by DIA, AD, AB, and Teucrium apollinis, respectively. This study shows a relationship between the type of NPs and Pseudomonas aeruginosa growth. The IO-NP functionalized by plant extract has a higher antibacterial effect than IO-NPs chemically synthesized. Because it has more infinity toward bacteria cells than other NP, it has a high ability to penetrate the membrane of bacterial cells. The use of Teucrium apollinis extract could be an eco-friendly way to synthesize IO-NP that offers a novel and potential alternative to chemically synthesized IO-NP.
不同方法合成的新型氧化铁纳米颗粒的比较分析及其抗菌活性评价
在本研究中,通过化学和绿色方法合成了稳定的新型氧化铁纳米颗粒。在化学方法中,使用对氨基苯甲酸(AB)、二乙酰单肟(DIA)和腺苷5-单磷酸二钠(AD)作为稳定的配体,而在绿色合成方法中使用天花粉提取物。研究了这些稳定配体对IO NPs的大小、稳定性和抗菌活性的影响。使用紫外-可见吸收光谱(UV-Vis)、动态光散射(DLS)、透射电子显微镜(TEM)和衰减傅立叶变换红外(ATR-FTIR)对合成的IO NP进行了表征。对于分别由DIA、AD、AB和Teucrium apollinis功能化的IO NPs,IO NPs提供具有小尺寸(5nm、6nm、8nm和34nm)的球形。本研究显示了NPs的类型与铜绿假单胞菌生长之间的关系。植物提取物功能化的IO-NP比化学合成的IO-NPs具有更高的抗菌效果。因为它对细菌细胞的无限性比其他NP更大,所以它有很高的穿透细菌细胞膜的能力。使用天花粉提取物可能是一种生态友好的合成IO-NP的方法,为化学合成的IO-NP提供了一种新的潜在替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信