Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions

IF 9.9 2区 材料科学 Q1 Engineering
Yuke Song, Wenfu Xie, Mingfei Shao, Xue Duan
{"title":"Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions","authors":"Yuke Song,&nbsp;Wenfu Xie,&nbsp;Mingfei Shao,&nbsp;Xue Duan","doi":"10.1016/j.nanoms.2022.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Integrated electrocatalysts (IECs) containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity, high stability and the fact that they are easily assembled into devices. Recently, metal organic frameworks (MOFs) provide a promising platform for constructing advanced IECs because of their properties of low cost, large surface area and efficient structural tunability. In this review, the design principles of state-of-the-art IECs based on MOFs are presented, including by hydrothermal/solvothermal, template-directed, electrospinning, electrodeposition and other methods. The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gas-involved reactions. This is promising for green energy storage and conversion. The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some <em>in situ</em> technologies for IECs. Finally, we provide an outlook on the challenges and prospects in this booming field.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 2","pages":"Pages 161-176"},"PeriodicalIF":9.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000034","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

Abstract

Integrated electrocatalysts (IECs) containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity, high stability and the fact that they are easily assembled into devices. Recently, metal organic frameworks (MOFs) provide a promising platform for constructing advanced IECs because of their properties of low cost, large surface area and efficient structural tunability. In this review, the design principles of state-of-the-art IECs based on MOFs are presented, including by hydrothermal/solvothermal, template-directed, electrospinning, electrodeposition and other methods. The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gas-involved reactions. This is promising for green energy storage and conversion. The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs. Finally, we provide an outlook on the challenges and prospects in this booming field.

用于气体反应的金属有机框架衍生的集成电催化剂
含有直接生长在集电器上的明确功能材料的集成电催化剂(IEC)由于其高效活性、高稳定性以及易于组装成器件的事实,在电催化领域引起了人们越来越多的兴趣。近年来,金属有机框架(MOFs)以其低成本、大表面积和高效的结构可调性为构建先进的IEC提供了一个很有前途的平台。本文介绍了最先进的基于MOFs的IEC的设计原理,包括水热/溶剂热、模板定向、静电纺丝、电沉积和其他方法。MOF衍生的IEC的高性能也已在涉及电催化气体的反应中得到证明。这对绿色能源的储存和转换很有前景。通过对IEC的一些原位技术的讨论,揭示了IEC的结构-活性关系和性能改进机制。最后,我们展望了这一蓬勃发展的领域的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信