{"title":"The boundedness of the bilinear oscillatory integral along a parabola","authors":"Guoliang Li, Junfeng Li","doi":"10.1017/S0013091523000032","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \\begin{equation*}\nT_\\beta(f, g)(x)=p.v.\\int_{{\\mathbb R}} f(x-t)g(x-t^{2})\\,{\\rm e}^{i |t|^{\\beta}}\\,\\frac{{\\rm d}t}{t}\n\\end{equation*}is set up, where β > 1 or β < 0, $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$ and $\\frac{1}{2}\\lt r\\lt\\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\\infty\\times L^2\\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \begin{equation*}
T_\beta(f, g)(x)=p.v.\int_{{\mathbb R}} f(x-t)g(x-t^{2})\,{\rm e}^{i |t|^{\beta}}\,\frac{{\rm d}t}{t}
\end{equation*}is set up, where β > 1 or β < 0, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $\frac{1}{2}\lt r\lt\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\infty\times L^2\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.