The boundedness of the bilinear oscillatory integral along a parabola

Pub Date : 2023-02-01 DOI:10.1017/S0013091523000032
Guoliang Li, Junfeng Li
{"title":"The boundedness of the bilinear oscillatory integral along a parabola","authors":"Guoliang Li, Junfeng Li","doi":"10.1017/S0013091523000032","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \\begin{equation*}\nT_\\beta(f, g)(x)=p.v.\\int_{{\\mathbb R}} f(x-t)g(x-t^{2})\\,{\\rm e}^{i |t|^{\\beta}}\\,\\frac{{\\rm d}t}{t}\n\\end{equation*}is set up, where β > 1 or β < 0, $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$ and $\\frac{1}{2}\\lt r\\lt\\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\\infty\\times L^2\\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, the $L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$ boundedness of the bilinear oscillatory integral along parabola \begin{equation*} T_\beta(f, g)(x)=p.v.\int_{{\mathbb R}} f(x-t)g(x-t^{2})\,{\rm e}^{i |t|^{\beta}}\,\frac{{\rm d}t}{t} \end{equation*}is set up, where β > 1 or β < 0, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $\frac{1}{2}\lt r\lt\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\infty\times L^2\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.
分享
查看原文
双线性振荡积分沿抛物线的有界性
摘要本文建立了沿抛物线\begin{equation*}T_\beta(f, g)(x)=p.v.\int_{{\mathbb R}} f(x-t)g(x-t^{2})\,{\rm e}^{i |t|^{\beta}}\,\frac{{\rm d}t}{t}\end{equation*}的双线性振荡积分的$L^p(\mathbb{R})\times L^q(\mathbb{R})\rightarrow L^r(\mathbb{R})$有界性,其中β > 1或β < 0, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$和$\frac{1}{2}\lt r\lt\infty$, p > 1和q > 1。β < 0情况下的结果扩展了Fan和Li (D. Fan和X. Li, A沿抛物线的双线性振荡积分,正13(2)(2009),339-366)得到的$L^\infty\times L^2\to L^2$有界性,证实了其中提出的一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信