{"title":"Burst of internally Pressurised Steel Torispheres","authors":"J. Błachut","doi":"10.1115/1.4062432","DOIUrl":null,"url":null,"abstract":"\n The paper begins with derivation of true stress - true strain data, including post-necking section. Available results of past uni-axial tests on round 10 mm diameter and 200 mm long mild steel samples are the basis of the conversion. The steel in question was used to manufacture ten torispherical domes which were in the past tested for burst. Hence the relevance of matching material model necessary for the FE analyses.\n In the past plastic instability and constraints on the magnitude of plastic strains were postulated as criteria for the burst of internally pressurised torispheres. These criteria for burstpressure are being examined and benchmarked against the tests.\n The current paper, using the FE analyses, shows that modification of constraints on plastic strains has only marginal effect on the burst which still remains on the unsafe side of test data by a sizeable margin. The same is found to be true for plastic instability criterion.\n Subsequent computations moved back to the use of engineering stress-strain. Then two types of computing are carried out here, based on: multi-segment and bilinear modelling of material. Computed results of burst pressure follow the test data to within (-6%, +10%). These results are far better than all the previous.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062432","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper begins with derivation of true stress - true strain data, including post-necking section. Available results of past uni-axial tests on round 10 mm diameter and 200 mm long mild steel samples are the basis of the conversion. The steel in question was used to manufacture ten torispherical domes which were in the past tested for burst. Hence the relevance of matching material model necessary for the FE analyses.
In the past plastic instability and constraints on the magnitude of plastic strains were postulated as criteria for the burst of internally pressurised torispheres. These criteria for burstpressure are being examined and benchmarked against the tests.
The current paper, using the FE analyses, shows that modification of constraints on plastic strains has only marginal effect on the burst which still remains on the unsafe side of test data by a sizeable margin. The same is found to be true for plastic instability criterion.
Subsequent computations moved back to the use of engineering stress-strain. Then two types of computing are carried out here, based on: multi-segment and bilinear modelling of material. Computed results of burst pressure follow the test data to within (-6%, +10%). These results are far better than all the previous.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.