Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy

IF 6.8 2区 医学 Q1 CHEMISTRY, MEDICINAL
Ji-Soo Jeong, Jeong-Won Kim, Jin-Hwa Kim, Chang-Yeop Kim, Je-Won Ko, Tae-Won Kim
{"title":"Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy","authors":"Ji-Soo Jeong,&nbsp;Jeong-Won Kim,&nbsp;Jin-Hwa Kim,&nbsp;Chang-Yeop Kim,&nbsp;Je-Won Ko,&nbsp;Tae-Won Kim","doi":"10.1016/j.jgr.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in <em>in vivo</em> and <em>in vitro</em>. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated.</p></div><div><h3>Methods</h3><p>We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation.</p></div><div><h3>Results</h3><p>KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis.</p></div><div><h3>Conclusion</h3><p>Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 1","pages":"Pages 52-58"},"PeriodicalIF":6.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000763/pdfft?md5=bd6f73d14fb086d622fbfdd595220e31&pid=1-s2.0-S1226845323000763-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845323000763","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in in vivo and in vitro. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated.

Methods

We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation.

Results

KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis.

Conclusion

Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.

Abstract Image

Abstract Image

韩国红参抑制去神经支配诱导的骨骼肌萎缩中的线粒体凋亡途径
背景骨骼肌去神经支配会导致运动神经元变性,进而减少肌肉纤维体积。最近的研究发现,细胞凋亡在调节与神经支配相关的病理性肌肉萎缩中发挥了作用。高丽红参(KRG)具有多种生物活性,目前作为一种药用产品在全球被广泛食用。其中,人参对体内和体外肌肉萎缩具有保护作用。方法我们通过解剖坐骨神经诱导小鼠骨骼肌萎缩,给小鼠服用 KRG,然后对肌肉进行分析。结果KRG治疗显著增加了损伤区域的骨骼肌重量和胫骨前肌(TA)的肌纤维体积,并减少了TA肌肉的组织学改变。此外,KRG 治疗还减少了去神经诱导的胫骨前肌凋亡变化。KRG 以剂量依赖的方式减轻了神经损伤诱导的 p53/Bax/细胞色素 c/Caspase 3 信号传导。结论 KRG 对去神经支配诱导的肌肉萎缩具有潜在的保护作用。KRG 治疗的效果伴随着线粒体相关凋亡水平的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ginseng Research
Journal of Ginseng Research CHEMISTRY, MEDICINAL-INTEGRATIVE & COMPLEMENTARY MEDICINE
CiteScore
11.40
自引率
9.50%
发文量
111
审稿时长
6-12 weeks
期刊介绍: Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research. JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports. JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信