{"title":"Existence and Hyers–Ulam stability of solutions to a nonlinear implicit coupled system of fractional order","authors":"A. Zada, A. Ali, U. Riaz","doi":"10.1515/ijnsns-2022-0250","DOIUrl":null,"url":null,"abstract":"Abstract In this typescript, we study system of nonlinear implicit coupled differential equations of arbitrary (non–integer) order having nonlocal boundary conditions on closed interval [0, 1] with Caputo fractional derivative. We establish sufficient conditions for the existence, at least one and a unique solution of the proposed coupled system with the help of Krasnoselskii’s fixed point theorem and Banach contraction principle. Moreover, we scrutinize the Hyers–Ulam stability for the considered problem. We present examples to illustrate our main results.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0250","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this typescript, we study system of nonlinear implicit coupled differential equations of arbitrary (non–integer) order having nonlocal boundary conditions on closed interval [0, 1] with Caputo fractional derivative. We establish sufficient conditions for the existence, at least one and a unique solution of the proposed coupled system with the help of Krasnoselskii’s fixed point theorem and Banach contraction principle. Moreover, we scrutinize the Hyers–Ulam stability for the considered problem. We present examples to illustrate our main results.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.