Subwavelength grating-based silicon photonic TE mode division multiplexer for C + L band operation

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Darpan Mishra , Manoranjan Minz , Ramesh Kumar Sonkar
{"title":"Subwavelength grating-based silicon photonic TE mode division multiplexer for C + L band operation","authors":"Darpan Mishra ,&nbsp;Manoranjan Minz ,&nbsp;Ramesh Kumar Sonkar","doi":"10.1016/j.nancom.2023.100467","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This paper reports a subwavelength grating (SWG) based multiplexer (MUX) on a </span>silicon<span> photonics platform capable of multiplexing three transverse electric modes. The designed MUX is simulated using a commercial 3D finite-difference time-domain solver and shows broadband operation over the whole C and L optical telecom bands from 1530 nm to 1625 nm wavelength range<span><span><span>. The effective indices of the Bloch modes in the SWG </span>waveguides are extracted from the band structure plot. The designed MUX consists of two co-directional coupling regions for fundamental to higher-order mode coupling, with each coupling stage consisting of single-mode and </span>multimode SWG waveguides. The transmission characteristics, viz. transmittance, insertion loss, and return loss, are presented and discussed. The coupling lengths without the tapering regions for TE</span></span></span><span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>–TE<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> and TE<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>–TE<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> mode couplings are <span><math><mrow><mn>14</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>.</mo><mn>48</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, respectively. The transmittance is &gt;78% with the highest insertion loss and return loss of 1.1 dB and –15 dB, respectively. At 1550 nm, the transmission is <span><math><mi>&gt;</mi></math></span>88%, insertion loss is <span><math><mi>&lt;</mi></math></span>0.6 dB, and return loss is <span><math><mi>&lt;</mi></math></span><span>−15 dB. A uniform under-etch and over-etch of 5 nm are taken for the fabrication tolerance study, which shows a maximum variation of 0.58 dB for the insertion loss with return loss </span><span><math><mi>&lt;</mi></math></span>−14.6 dB at 1550 nm. Over the whole simulated range, the insertion loss is <span><math><mi>&lt;</mi></math></span>1.4 dB, and return loss is <span><math><mi>&lt;</mi></math></span>−14.6 dB with <span><math><mo>±</mo></math></span>10 nm change in device dimension. A temperature tolerance study with 50 °C and 100 °C rise in temperature has been done, and the device retains its broadband operation over the simulated range. The maximum increase in insertion loss is 0.1 dB for the TE<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>–TE<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> coupling, while the overall return loss of the device decreases to <span><math><mi>&lt;</mi></math></span>−20 dB for the TE<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>–TE<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> coupling.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"38 ","pages":"Article 100467"},"PeriodicalIF":2.9000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000339","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports a subwavelength grating (SWG) based multiplexer (MUX) on a silicon photonics platform capable of multiplexing three transverse electric modes. The designed MUX is simulated using a commercial 3D finite-difference time-domain solver and shows broadband operation over the whole C and L optical telecom bands from 1530 nm to 1625 nm wavelength range. The effective indices of the Bloch modes in the SWG waveguides are extracted from the band structure plot. The designed MUX consists of two co-directional coupling regions for fundamental to higher-order mode coupling, with each coupling stage consisting of single-mode and multimode SWG waveguides. The transmission characteristics, viz. transmittance, insertion loss, and return loss, are presented and discussed. The coupling lengths without the tapering regions for TE0–TE1 and TE0–TE2 mode couplings are 14μm and 1.48μm, respectively. The transmittance is >78% with the highest insertion loss and return loss of 1.1 dB and –15 dB, respectively. At 1550 nm, the transmission is >88%, insertion loss is <0.6 dB, and return loss is <−15 dB. A uniform under-etch and over-etch of 5 nm are taken for the fabrication tolerance study, which shows a maximum variation of 0.58 dB for the insertion loss with return loss <−14.6 dB at 1550 nm. Over the whole simulated range, the insertion loss is <1.4 dB, and return loss is <−14.6 dB with ±10 nm change in device dimension. A temperature tolerance study with 50 °C and 100 °C rise in temperature has been done, and the device retains its broadband operation over the simulated range. The maximum increase in insertion loss is 0.1 dB for the TE0–TE2 coupling, while the overall return loss of the device decreases to <−20 dB for the TE0–TE1 coupling.

用于C+L波段操作的基于亚波长光栅的硅光子TE模分复用器
本文报道了一种基于亚波长光栅(SWG)的复用器(MUX),该复用器位于硅光子学平台上,能够复用三种横向电模式。使用商用三维时域有限差分求解器对所设计的MUX进行了模拟,并显示了在1530 nm至1625 nm波长范围的整个C和L光电信频带上的宽带操作。从能带结构图中提取了SWG波导中Bloch模的有效折射率。所设计的MUX由两个用于基本到高阶模式耦合的同向耦合区域组成,每个耦合级由单模和多模SWG波导组成。给出并讨论了传输特性,即透射率、插入损耗和回波损耗。TE0-TE1和TE0-TE2模式耦合在没有锥形区的情况下的耦合长度分别为14μm和1.48μm。透射率>;78%,最高插入损耗和回波损耗分别为1.1 dB和–15 dB。在1550nm处,透射率>;88%,插入损耗<;0.6dB,回波损耗<;−15分贝。采用5nm的均匀欠蚀刻和过蚀刻进行制造公差研究,其显示插入损耗的最大变化为0.58dB,回波损耗<;−在1550 nm时为14.6 dB。在整个模拟范围内,插入损耗<;1.4dB,回波损耗<;−14.6 dB,器件尺寸变化±10 nm。已经进行了温度上升50°C和100°C的温度耐受性研究,该设备在模拟范围内保持宽带运行。对于TE0–TE2耦合,插入损耗的最大增加为0.1 dB,而器件的总回波损耗降至<;−TE0–TE1耦合为20 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信