Cédric Bossard, Henri Granel, Y. Wittrant, É. Jallot, J. Lao, C. Vial, H. Tiainen
{"title":"Polycaprolactone / bioactive glass hybrid scaffolds for bone regeneration","authors":"Cédric Bossard, Henri Granel, Y. Wittrant, É. Jallot, J. Lao, C. Vial, H. Tiainen","doi":"10.1515/bglass-2018-0010","DOIUrl":null,"url":null,"abstract":"Abstract Bioactive glasses (BG) bond to bone and stimulate bone regeneration, but they are brittle. Inorganicorganic hybrids appear as promising bone substitutes since they associate the bone mineral forming ability of BG with the toughness of polymers. Hybrids comprised of polycaprolactone (PCL) and SiO2-CaO BG were produced by sol-gel chemistry and processed into porous scaffolds with controlled pore and interconnection sizes. The obtained scaffolds are highly flexible, meaning that PCL effectively introduces toughness. Apatite formation is observed within 24 hours of immersion in simulated body fluid (SBF) and is not limited to the surface as the entire hybrid progressively changes into bone-like minerals. The degradation rate is suitable for bone regeneration with a 13.2% weight loss after 8 weeks of immersion. Primary osteoblasts cultured in scaffolds demonstrate that the samples are not cytotoxic and provide good cell adhesion. The in vivo study confirms the bioactivity, biocompatibility and suitable degradation rate of the hybrid. A physiological bone made of trabeculae and bone marrow regenerates. The structure and kinetic of bone regeneration was similar to the implanted commercial standard based on bovine bone, demonstrating that this new synthetic PCL-BG hybrid could perform as well as animal-derived bone substitutes.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2018-0010","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2018-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 27
Abstract
Abstract Bioactive glasses (BG) bond to bone and stimulate bone regeneration, but they are brittle. Inorganicorganic hybrids appear as promising bone substitutes since they associate the bone mineral forming ability of BG with the toughness of polymers. Hybrids comprised of polycaprolactone (PCL) and SiO2-CaO BG were produced by sol-gel chemistry and processed into porous scaffolds with controlled pore and interconnection sizes. The obtained scaffolds are highly flexible, meaning that PCL effectively introduces toughness. Apatite formation is observed within 24 hours of immersion in simulated body fluid (SBF) and is not limited to the surface as the entire hybrid progressively changes into bone-like minerals. The degradation rate is suitable for bone regeneration with a 13.2% weight loss after 8 weeks of immersion. Primary osteoblasts cultured in scaffolds demonstrate that the samples are not cytotoxic and provide good cell adhesion. The in vivo study confirms the bioactivity, biocompatibility and suitable degradation rate of the hybrid. A physiological bone made of trabeculae and bone marrow regenerates. The structure and kinetic of bone regeneration was similar to the implanted commercial standard based on bovine bone, demonstrating that this new synthetic PCL-BG hybrid could perform as well as animal-derived bone substitutes.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.