"Solutions of Split Equality Hammerstein Type Equation Problems in Reflexive Real Banach Spaces"

IF 1.4 4区 数学 Q1 MATHEMATICS
Y. Belay, H. Zegeye, O. A. Boikanyo
{"title":"\"Solutions of Split Equality Hammerstein Type Equation Problems in Reflexive Real Banach Spaces\"","authors":"Y. Belay, H. Zegeye, O. A. Boikanyo","doi":"10.37193/cjm.2023.01.03","DOIUrl":null,"url":null,"abstract":"\"The purpose of this study is to introduce an inertial algorithm for approximating a solution of the split equality Hammerstein type equation problem in general reflexive real Banach spaces. Strong convergence results are established under the assumption that the associated mappings are monotone and uniformly continuous. The results in this paper generalize and improve many of the existing results in the literature in the sense that the underlying mappings are relaxed from Lipschitz continuous to uniformly continuous and the spaces under consideration are extended from Hilbert spaces to reflexive real Banach spaces with a more general problem which includes the Hammerstein type equation problems.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"The purpose of this study is to introduce an inertial algorithm for approximating a solution of the split equality Hammerstein type equation problem in general reflexive real Banach spaces. Strong convergence results are established under the assumption that the associated mappings are monotone and uniformly continuous. The results in this paper generalize and improve many of the existing results in the literature in the sense that the underlying mappings are relaxed from Lipschitz continuous to uniformly continuous and the spaces under consideration are extended from Hilbert spaces to reflexive real Banach spaces with a more general problem which includes the Hammerstein type equation problems."
“自反实Banach空间中分裂等式Hammerstein型方程问题的解”
本研究的目的是引入一种惯性算法来逼近一般自反实Banach空间中分裂等式Hammerstein型方程问题的解。在关联映射是单调一致连续的假设下,得到了强收敛结果。本文的结果推广和改进了文献中已有的许多结果,将基础映射从Lipschitz连续放宽到一致连续,将所考虑的空间从Hilbert空间扩展到包含Hammerstein型方程问题的更一般问题的自反实Banach空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信