Towards automated organs at risk and target volumes contouring: Defining precision radiation therapy in the modern era

IF 7.6 Q1 ONCOLOGY
Dakai Jin , Dazhou Guo , Jia Ge , Xianghua Ye , Le Lu
{"title":"Towards automated organs at risk and target volumes contouring: Defining precision radiation therapy in the modern era","authors":"Dakai Jin ,&nbsp;Dazhou Guo ,&nbsp;Jia Ge ,&nbsp;Xianghua Ye ,&nbsp;Le Lu","doi":"10.1016/j.jncc.2022.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Precision radiotherapy is a critical and indispensable cancer treatment means in the modern clinical workflow with the goal of achieving “quality-up and cost-down” in patient care. The challenge of this therapy lies in developing computerized clinical-assistant solutions with precision, automation, and reproducibility built-in to deliver it at scale. In this work, we provide a comprehensive yet ongoing, incomplete survey of and discussions on the recent progress of utilizing advanced deep learning, semantic organ parsing, multimodal imaging fusion, neural architecture search and medical image analytical techniques to address four corner-stone problems or sub-problems required by all precision radiotherapy workflows, namely, organs at risk (OARs) segmentation, gross tumor volume (GTV) segmentation, metastasized lymph node (LN) detection, and clinical tumor volume (CTV) segmentation. Without loss of generality, we mainly focus on using esophageal and head-and-neck cancers as examples, but the methods can be extrapolated to other types of cancers. High-precision, automated and highly reproducible OAR/GTV/LN/CTV auto-delineation techniques have demonstrated their effectiveness in reducing the inter-practitioner variabilities and the time cost to permit rapid treatment planning and adaptive replanning for the benefit of patients. Through the presentation of the achievements and limitations of these techniques in this review, we hope to encourage more collective multidisciplinary precision radiotherapy workflows to transpire.</p></div>","PeriodicalId":73987,"journal":{"name":"Journal of the National Cancer Center","volume":"2 4","pages":"Pages 306-313"},"PeriodicalIF":7.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667005422000655/pdfft?md5=66327b4c3916dfca49fc1b6b2024d426&pid=1-s2.0-S2667005422000655-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the National Cancer Center","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667005422000655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Precision radiotherapy is a critical and indispensable cancer treatment means in the modern clinical workflow with the goal of achieving “quality-up and cost-down” in patient care. The challenge of this therapy lies in developing computerized clinical-assistant solutions with precision, automation, and reproducibility built-in to deliver it at scale. In this work, we provide a comprehensive yet ongoing, incomplete survey of and discussions on the recent progress of utilizing advanced deep learning, semantic organ parsing, multimodal imaging fusion, neural architecture search and medical image analytical techniques to address four corner-stone problems or sub-problems required by all precision radiotherapy workflows, namely, organs at risk (OARs) segmentation, gross tumor volume (GTV) segmentation, metastasized lymph node (LN) detection, and clinical tumor volume (CTV) segmentation. Without loss of generality, we mainly focus on using esophageal and head-and-neck cancers as examples, but the methods can be extrapolated to other types of cancers. High-precision, automated and highly reproducible OAR/GTV/LN/CTV auto-delineation techniques have demonstrated their effectiveness in reducing the inter-practitioner variabilities and the time cost to permit rapid treatment planning and adaptive replanning for the benefit of patients. Through the presentation of the achievements and limitations of these techniques in this review, we hope to encourage more collective multidisciplinary precision radiotherapy workflows to transpire.

迈向自动化危险器官和靶体积轮廓:定义现代精确放射治疗
精准放疗是现代临床工作流程中必不可少的重要肿瘤治疗手段,其目标是实现“提质降本”。这种疗法的挑战在于开发具有精确、自动化和可重复性的计算机临床辅助解决方案,以大规模地提供治疗。在这项工作中,我们对利用先进的深度学习、语义器官解析、多模态成像融合、神经结构搜索和医学图像分析技术来解决所有精确放疗工作流程所需的四个基石问题或子问题的最新进展进行了全面但不完整的调查和讨论,即危险器官(OARs)分割、总肿瘤体积(GTV)分割、转移性淋巴结(LN)检测、临床肿瘤体积(CTV)分割。在不丧失一般性的情况下,我们主要以食管癌和头颈癌为例,但这些方法可以外推到其他类型的癌症。高精度、自动化和高度可重复的OAR/GTV/LN/CTV自动描绘技术已经证明了它们在减少医生之间的差异和时间成本方面的有效性,从而允许快速的治疗计划和适应性的重新计划,以造福患者。通过在这篇综述中介绍这些技术的成就和局限性,我们希望鼓励更多的多学科精确放疗工作流程的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
70 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信