Chao Feng, K. Dong, R. Zhu, Tao Lin, Jianfeng Dong, Tao Xia, Xin Ren
{"title":"Effect of ambient temperature on the jet characteristics of a swirl oxygen lance with mixed injection of CO2 + O2","authors":"Chao Feng, K. Dong, R. Zhu, Tao Lin, Jianfeng Dong, Tao Xia, Xin Ren","doi":"10.1515/htmp-2022-0239","DOIUrl":null,"url":null,"abstract":"Abstract O2 mixed with CO2 gas has been successfully applied in converter smelting; however, up to now, there have been few studies regarding the jet characteristics of the mixed injection of the swirl oxygen lance nozzle and the influence of different ambient temperature conditions on jet characteristics compared with common nozzles. In this study, Fluent software was used to simulate the jet characteristics of a four-hole common nozzle and a four-hole swirl nozzle under four different ambient temperature conditions to inject 95% O2 + 5% CO2 and analyze the influence of different ambient temperatures on nozzle-jet characteristics. The results show that with an increase in the ambient temperature, the jet-axis velocity and nozzle centerline speed increase. Under the same distance condition, the distance between the maximum radial velocity point of the jet and the centerline of the nozzle becomes larger, with a velocity greater than that of the swirl nozzle. However, the influence of the ambient temperature on the offset of the jet centerline is small. With an increase in the ambient temperature and distance, the jet-axis temperature increases and the temperature of the nozzle centerline decreases. The research results can provide a theoretical reference for the optimal design of a CO2 + O2 swirl oxygen lance nozzle.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"41 1","pages":"635 - 649"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract O2 mixed with CO2 gas has been successfully applied in converter smelting; however, up to now, there have been few studies regarding the jet characteristics of the mixed injection of the swirl oxygen lance nozzle and the influence of different ambient temperature conditions on jet characteristics compared with common nozzles. In this study, Fluent software was used to simulate the jet characteristics of a four-hole common nozzle and a four-hole swirl nozzle under four different ambient temperature conditions to inject 95% O2 + 5% CO2 and analyze the influence of different ambient temperatures on nozzle-jet characteristics. The results show that with an increase in the ambient temperature, the jet-axis velocity and nozzle centerline speed increase. Under the same distance condition, the distance between the maximum radial velocity point of the jet and the centerline of the nozzle becomes larger, with a velocity greater than that of the swirl nozzle. However, the influence of the ambient temperature on the offset of the jet centerline is small. With an increase in the ambient temperature and distance, the jet-axis temperature increases and the temperature of the nozzle centerline decreases. The research results can provide a theoretical reference for the optimal design of a CO2 + O2 swirl oxygen lance nozzle.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.