Detection and Control of Epileptiform Regime in the Hodgkin–Huxley Artificial Neural Networks via Quantum Algorithms

Q3 Physics and Astronomy
S. Borisenok
{"title":"Detection and Control of Epileptiform Regime in the Hodgkin–Huxley Artificial Neural Networks via Quantum Algorithms","authors":"S. Borisenok","doi":"10.35470/2226-4116-2022-11-1-7-12","DOIUrl":null,"url":null,"abstract":"The problem of detection and the following suppression of epileptiform dynamics in artificial neural networks (ANN) still is a hot topic in modern theoretical and applied neuroscience. For the purpose of such modeling, the Hodgkin–Huxley (HH) elements are important due to the variety of their behavior such as resting, singular spikes, and spike trains and bursts. This dynamical spectrum of individual HH neurons can cause an epileptiform regime originated in the hyper-synchronization of the cell outcomes. Our model covers the detection and suppression of ictal behavior in a small ANN consisting of HH cells. The model follows our approach [Borisenok et al., 2018] for the HH neurons as a classical dynamical system driving the collective neural bursting, but here we use a quantum paradigm-based algorithm emulated with the pair of HH neurons. Such emulation becomes possible due to the complexity of the individual 4d HH dynamics. The linear chain of two HH neurons is connected to the rest of ANN and works autonomously. The first neuron plays a role of the detecting element for the hyper-synchronization in the ANN and the quantum algorithm emulator; while the second one works as a measuring element (emulation of the quantum measurement converting the signals into the classical domain) and the trigger for the feedback suppressing the epileptiform regime. We use here the speed gradient algorithm for controling the emulating neuron and discuss its pros and cons to compare with our classical model of epileptiform suppression.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2022-11-1-7-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of detection and the following suppression of epileptiform dynamics in artificial neural networks (ANN) still is a hot topic in modern theoretical and applied neuroscience. For the purpose of such modeling, the Hodgkin–Huxley (HH) elements are important due to the variety of their behavior such as resting, singular spikes, and spike trains and bursts. This dynamical spectrum of individual HH neurons can cause an epileptiform regime originated in the hyper-synchronization of the cell outcomes. Our model covers the detection and suppression of ictal behavior in a small ANN consisting of HH cells. The model follows our approach [Borisenok et al., 2018] for the HH neurons as a classical dynamical system driving the collective neural bursting, but here we use a quantum paradigm-based algorithm emulated with the pair of HH neurons. Such emulation becomes possible due to the complexity of the individual 4d HH dynamics. The linear chain of two HH neurons is connected to the rest of ANN and works autonomously. The first neuron plays a role of the detecting element for the hyper-synchronization in the ANN and the quantum algorithm emulator; while the second one works as a measuring element (emulation of the quantum measurement converting the signals into the classical domain) and the trigger for the feedback suppressing the epileptiform regime. We use here the speed gradient algorithm for controling the emulating neuron and discuss its pros and cons to compare with our classical model of epileptiform suppression.
用量子算法检测和控制Hodgkin–Huxley人工神经网络中的癫痫状态
人工神经网络中癫痫样动态的检测和抑制问题仍然是现代神经科学理论和应用领域的热点问题。为了这种建模的目的,霍奇金-赫胥黎(HH)元素很重要,因为它们的行为多种多样,如静息、奇异尖峰、尖峰序列和爆发。单个HH神经元的这种动态谱可引起源于细胞结果超同步的癫痫样状态。我们的模型涵盖了由HH细胞组成的小型人工神经网络中临界行为的检测和抑制。该模型遵循我们的方法[Borisenok等人,2018],将HH神经元作为驱动集体神经爆发的经典动力系统,但在这里,我们使用基于量子范式的算法模拟一对HH神经元。由于单个4d HH动态的复杂性,这种仿真成为可能。两个HH神经元的线性链连接到人工神经网络的其余部分并自主工作。第一个神经元在人工神经网络和量子算法仿真器中起超同步检测元件的作用;而第二个则作为测量元件(模拟量子测量将信号转换为经典域)和触发反馈抑制癫痫样状态。我们使用速度梯度算法来控制模拟神经元,并讨论其优缺点,并与我们的经典癫痫样抑制模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信