Shock wave response of porous carbon fiber–epoxy composite

IF 1.7 4区 工程技术 Q3 MECHANICS
V. Mochalova, A. Utkin, V. Sosikov, V. Yakushev, A. Zhukov
{"title":"Shock wave response of porous carbon fiber–epoxy composite","authors":"V. Mochalova,&nbsp;A. Utkin,&nbsp;V. Sosikov,&nbsp;V. Yakushev,&nbsp;A. Zhukov","doi":"10.1007/s00193-022-01104-3","DOIUrl":null,"url":null,"abstract":"<div><p>An experimental investigation of the shock wave structure, Hugoniot states, and spall strength of a shock-compressed porous carbon fiber–epoxy composite was conducted. To generate high dynamic pressures in the material, the impact of flat-plate aluminum projectiles accelerated by explosive planar shock wave generators to velocities ranging from 0.65 to 5.05 km/s was used. Particle velocity profiles were recorded on the composite surface–water window interface with a multichannel VISAR laser interferometer. On the velocity profiles for the composite with a transverse fiber orientation, a single shock wave was recorded, while for the parallel orientation, a two-wave structure was observed. It was found that the shock wave compressibility of the porous composite did not depend on the fiber orientation relative to the direction of shock wave propagation. A kink on the Hugoniot curve was observed at the pressure of 19 GPa. The results obtained for the porous composite were compared with data for a non-porous carbon–epoxy composite and epoxy resin used as a matrix in the composites. When analyzing dynamic fracture of the porous composite under shock compression, it was found that the spall strength of the material was significantly lower than that of epoxy resin.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"32 8","pages":"715 - 725"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-022-01104-3.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01104-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

An experimental investigation of the shock wave structure, Hugoniot states, and spall strength of a shock-compressed porous carbon fiber–epoxy composite was conducted. To generate high dynamic pressures in the material, the impact of flat-plate aluminum projectiles accelerated by explosive planar shock wave generators to velocities ranging from 0.65 to 5.05 km/s was used. Particle velocity profiles were recorded on the composite surface–water window interface with a multichannel VISAR laser interferometer. On the velocity profiles for the composite with a transverse fiber orientation, a single shock wave was recorded, while for the parallel orientation, a two-wave structure was observed. It was found that the shock wave compressibility of the porous composite did not depend on the fiber orientation relative to the direction of shock wave propagation. A kink on the Hugoniot curve was observed at the pressure of 19 GPa. The results obtained for the porous composite were compared with data for a non-porous carbon–epoxy composite and epoxy resin used as a matrix in the composites. When analyzing dynamic fracture of the porous composite under shock compression, it was found that the spall strength of the material was significantly lower than that of epoxy resin.

Abstract Image

多孔碳纤维-环氧复合材料的冲击波响应
对冲击压缩多孔碳纤维-环氧复合材料的激波结构、Hugoniot状态和剥落强度进行了实验研究。为了在材料中产生较高的动压,利用爆炸平面激波发生器将平板铝弹的冲击速度加速到0.65 ~ 5.05 km/s。用多通道VISAR激光干涉仪记录了复合材料表面-水窗口界面上的粒子速度分布。在纤维横向取向的复合材料的速度分布上,记录到一个单一的激波,而在平行取向的复合材料中,观察到一个双波结构。研究发现,多孔复合材料的激波压缩性能与纤维相对于激波传播方向的取向无关。在19gpa的压力下,Hugoniot曲线出现扭结。将多孔复合材料的实验结果与无孔碳-环氧复合材料和环氧树脂为基体的复合材料的实验结果进行了比较。通过对多孔复合材料在冲击压缩作用下的动态断裂进行分析,发现该材料的剥落强度明显低于环氧树脂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信