Classifying Cider Apple Germplasm Using Genetic Markers for Fruit Acidity

IF 1.2 4区 农林科学 Q3 HORTICULTURE
Shantha Kumar, Nathan Wojtyna, Laura Dougherty, Kenong Xu, G. Peck
{"title":"Classifying Cider Apple Germplasm Using Genetic Markers for Fruit Acidity","authors":"Shantha Kumar, Nathan Wojtyna, Laura Dougherty, Kenong Xu, G. Peck","doi":"10.21273/JASHS05056-21","DOIUrl":null,"url":null,"abstract":"The organic acid concentration in apple (Malus ×domestica) juice is a major component of hard cider flavor. The goal of this study was to determine if the malic acid markers, Ma1 and Q8, could classify the titratable acidity concentration in cider apple accessions from the United States Department of Agriculture Malus germplasm collection into descriptive classifications. Our results indicate that for diploid genotypes, the Ma1 marker alone and the Ma1 and Q8 markers analyzed together could be used to predict cider apple acidity (P < 0.0001). Alone, the Ma1 marker categorized acidity into low (<2.4 g⋅L−1), medium (2.4–5.8 g⋅L−1), and high (>5.8 g⋅L−1) groups. The combination of Ma1 and Q8 markers provided more specificity, which would be useful for plant breeding applications. This work also identified a significant difference (P = 0.0132) in acidity associated with ploidy. On average, the triploids accessions had 0.33 g⋅L−1 higher titratable acidity than the diploid accessions. Based on the results of this work, we propose a genetics-based classification system for cider apples with the acidity component defined by the Ma1 and Q8 markers.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/JASHS05056-21","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 4

Abstract

The organic acid concentration in apple (Malus ×domestica) juice is a major component of hard cider flavor. The goal of this study was to determine if the malic acid markers, Ma1 and Q8, could classify the titratable acidity concentration in cider apple accessions from the United States Department of Agriculture Malus germplasm collection into descriptive classifications. Our results indicate that for diploid genotypes, the Ma1 marker alone and the Ma1 and Q8 markers analyzed together could be used to predict cider apple acidity (P < 0.0001). Alone, the Ma1 marker categorized acidity into low (<2.4 g⋅L−1), medium (2.4–5.8 g⋅L−1), and high (>5.8 g⋅L−1) groups. The combination of Ma1 and Q8 markers provided more specificity, which would be useful for plant breeding applications. This work also identified a significant difference (P = 0.0132) in acidity associated with ploidy. On average, the triploids accessions had 0.33 g⋅L−1 higher titratable acidity than the diploid accessions. Based on the results of this work, we propose a genetics-based classification system for cider apples with the acidity component defined by the Ma1 and Q8 markers.
利用果实酸度遗传标记对苹果酒种质进行分类
苹果汁中的有机酸浓度是硬苹果酒风味的主要组成部分。本研究的目的是确定苹果酸标记Ma1和Q8是否可以将美国农业部苹果种质资源中苹果酒苹果材料的可滴定酸度浓度分类为描述性分类。我们的研究结果表明,对于二倍体基因型,单独的Ma1标记以及一起分析的Ma1和Q8标记可以用于预测苹果酒的酸度(P<0.0001)。单独的Ma1标记将酸度分为低(5.8 g·L−1)组。Ma1和Q8标记的组合提供了更多的特异性,这将有助于植物育种应用。这项工作还发现了与倍性相关的酸度的显著差异(P=0.0132)。平均而言,三倍体材料的可滴定酸度比二倍体材料高0.33g·L−1。基于这项工作的结果,我们提出了一个基于遗传学的苹果酒分类系统,其酸度成分由Ma1和Q8标记定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
31
审稿时长
2 months
期刊介绍: The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers. The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as: - Biotechnology - Developmental Physiology - Environmental Stress Physiology - Genetics and Breeding - Photosynthesis, Sources-Sink Physiology - Postharvest Biology - Seed Physiology - Postharvest Biology - Seed Physiology - Soil-Plant-Water Relationships - Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信