Dana A. Da’ana, Nabil Zouari, Mohammad Y. Ashfaq, Mohammed Abu-Dieyeh, Majeda Khraisheh, Yousef M. Hijji, Mohammad A. Al-Ghouti
{"title":"Removal of Toxic Elements and Microbial Contaminants from Groundwater Using Low-Cost Treatment Options","authors":"Dana A. Da’ana, Nabil Zouari, Mohammad Y. Ashfaq, Mohammed Abu-Dieyeh, Majeda Khraisheh, Yousef M. Hijji, Mohammad A. Al-Ghouti","doi":"10.1007/s40726-021-00187-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This paper reviews various low-cost treatment techniques such as adsorption, permeable reactive barrier, and biological techniques for the simultaneous removal of chemical and microbial contaminants from groundwater and discusses treatment mechanisms of different treatment techniques. This paper also discusses the challenges of groundwater treatment, how to choose the appropriate treatment technique, and cost analysis of groundwater treatment.</p><h3>Recent Findings</h3><p>Various treatment technologies have been used for the treatment of groundwater: physical, chemical, and biological technologies with different success rates. In the literature, various adsorbents have been successfully synthesized from low-cost and environmentally friendly materials. Adsorption is considered an efficient treatment technique for the removal of both toxic elements and pathogens by utilizing different adsorbents. For example, the nanostructures of MgO with a BET surface area of up to 171 m<sup>2</sup>/g obtained a very high adsorption capacity of 29,131 mg/g for fluoride ions in water, while the incorporation of iron in activated carbon has improved its adsorption capacity to 51.3 mg/g for arsenic. Moreover, certain adsorbents have shown the capability to remove 99% of the rotavirus and adenovirus from groundwater.</p><h3>Summary</h3><p>Groundwater resources are contaminated with toxic metals and pathogens. Therefore, water treatment technologies should be evaluated for their efficiency to remove such contaminants. Determination of the most cost-effective and efficient treatment technique is not an easy task and requires the understanding of various aspects such as the contaminants present in water, the reuse options considered, and cost analysis of the treatment technique.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"7 3","pages":"300 - 324"},"PeriodicalIF":6.4000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40726-021-00187-3","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-021-00187-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 16
Abstract
Purpose of Review
This paper reviews various low-cost treatment techniques such as adsorption, permeable reactive barrier, and biological techniques for the simultaneous removal of chemical and microbial contaminants from groundwater and discusses treatment mechanisms of different treatment techniques. This paper also discusses the challenges of groundwater treatment, how to choose the appropriate treatment technique, and cost analysis of groundwater treatment.
Recent Findings
Various treatment technologies have been used for the treatment of groundwater: physical, chemical, and biological technologies with different success rates. In the literature, various adsorbents have been successfully synthesized from low-cost and environmentally friendly materials. Adsorption is considered an efficient treatment technique for the removal of both toxic elements and pathogens by utilizing different adsorbents. For example, the nanostructures of MgO with a BET surface area of up to 171 m2/g obtained a very high adsorption capacity of 29,131 mg/g for fluoride ions in water, while the incorporation of iron in activated carbon has improved its adsorption capacity to 51.3 mg/g for arsenic. Moreover, certain adsorbents have shown the capability to remove 99% of the rotavirus and adenovirus from groundwater.
Summary
Groundwater resources are contaminated with toxic metals and pathogens. Therefore, water treatment technologies should be evaluated for their efficiency to remove such contaminants. Determination of the most cost-effective and efficient treatment technique is not an easy task and requires the understanding of various aspects such as the contaminants present in water, the reuse options considered, and cost analysis of the treatment technique.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.