A. Egger, S. Eisbacher‐Lubensky, Kathrin Sampl, V. Subotić, C. Hochenauer, W. Sitte, E. Bucher
{"title":"Pr‐ and Co‐substitution in rare earth nickelates: Application as SOEC air electrodes","authors":"A. Egger, S. Eisbacher‐Lubensky, Kathrin Sampl, V. Subotić, C. Hochenauer, W. Sitte, E. Bucher","doi":"10.1002/fuce.202300037","DOIUrl":null,"url":null,"abstract":"In this work, fundamental material properties of compounds in the system (La,Pr)2(Ni,Co)O4+δ as well as their performance as air electrodes in solid oxide electrolysis cells were investigated. Nickelates co‐doped with Pr and Co were characterized on a material basis by means of X‐ray diffraction and thermogravimetry. Conductivity and conductivity relaxation measurements were performed in order to obtain the electronic conductivity as well as the chemical surface exchange coefficient and the chemical diffusion coefficient of oxygen as a function of temperature and oxygen partial pressure. These parameters can be regarded as the most essential properties at the material level required to assess the suitability of mixed ionic‐electronic conducting ceramics for application as air electrode in solid oxide cells. The electrode performance of the materials was then tested on fuel electrode‐supported button cells at 800°C. The electrodes were applied by screen‐printing and the effect of varying the Pr‐content and Co‐content of the electrode powder was investigated. Cell tests were performed by means of current‐voltage measurements in electrolysis mode. While no significant impact of Pr‐doping on the investigated material properties was observed, the electrode performance of Pr‐containing materials was significantly better than for the Pr‐free compound, which has been discussed in detail.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/fuce.202300037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, fundamental material properties of compounds in the system (La,Pr)2(Ni,Co)O4+δ as well as their performance as air electrodes in solid oxide electrolysis cells were investigated. Nickelates co‐doped with Pr and Co were characterized on a material basis by means of X‐ray diffraction and thermogravimetry. Conductivity and conductivity relaxation measurements were performed in order to obtain the electronic conductivity as well as the chemical surface exchange coefficient and the chemical diffusion coefficient of oxygen as a function of temperature and oxygen partial pressure. These parameters can be regarded as the most essential properties at the material level required to assess the suitability of mixed ionic‐electronic conducting ceramics for application as air electrode in solid oxide cells. The electrode performance of the materials was then tested on fuel electrode‐supported button cells at 800°C. The electrodes were applied by screen‐printing and the effect of varying the Pr‐content and Co‐content of the electrode powder was investigated. Cell tests were performed by means of current‐voltage measurements in electrolysis mode. While no significant impact of Pr‐doping on the investigated material properties was observed, the electrode performance of Pr‐containing materials was significantly better than for the Pr‐free compound, which has been discussed in detail.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.