A Stabilized Sequential Quadratic Programming Method for Optimization Problems in Function Spaces

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Yuya Yamakawa
{"title":"A Stabilized Sequential Quadratic Programming Method for Optimization Problems in Function Spaces","authors":"Yuya Yamakawa","doi":"10.1080/01630563.2023.2178009","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a stabilized sequential quadratic programming (SQP) method for optimization problems in function spaces. A form of the problem considered in this paper can widely formulate many types of applications, such as obstacle problems, optimal control problems, and so on. Moreover, the proposed method is based on the existing stabilized SQP method and can find a point satisfying the Karush-Kuhn-Tucker (KKT) or asymptotic KKT conditions. One of the remarkable points is that we prove its global convergence to such a point under some assumptions without any constraint qualifications. In addition, we guarantee that an arbitrary accumulation point generated by the proposed method satisfies the KKT conditions under several additional assumptions. Finally, we report some numerical experiments to examine the effectiveness of the proposed method.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"867 - 905"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2178009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we propose a stabilized sequential quadratic programming (SQP) method for optimization problems in function spaces. A form of the problem considered in this paper can widely formulate many types of applications, such as obstacle problems, optimal control problems, and so on. Moreover, the proposed method is based on the existing stabilized SQP method and can find a point satisfying the Karush-Kuhn-Tucker (KKT) or asymptotic KKT conditions. One of the remarkable points is that we prove its global convergence to such a point under some assumptions without any constraint qualifications. In addition, we guarantee that an arbitrary accumulation point generated by the proposed method satisfies the KKT conditions under several additional assumptions. Finally, we report some numerical experiments to examine the effectiveness of the proposed method.
函数空间优化问题的稳定序列二次规划方法
摘要本文提出了一种求解函数空间优化问题的稳定序列二次规划方法。本文所考虑的一种形式的问题可以广泛地表述许多类型的应用,如障碍问题、最优控制问题等。此外,该方法基于现有的稳定SQP方法,可以找到满足Karush-Kuhn-Tucker(KKT)或渐近KKT条件的点。值得注意的一点是,我们在没有任何约束条件的情况下,在一些假设下证明了它的全局收敛性。此外,我们保证由所提出的方法生成的任意累积点在几个附加假设下满足KKT条件。最后,我们报告了一些数值实验来检验该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信