Uzma Amin , Rong Jiang , Shahid Masood Raza , Mengtian Fan , Li Liang , Naibo Feng , Xiaoli Li , Yuyou Yang , Fengjin Guo
{"title":"Gut-joint axis: Oral Probiotic ameliorates Osteoarthritis","authors":"Uzma Amin , Rong Jiang , Shahid Masood Raza , Mengtian Fan , Li Liang , Naibo Feng , Xiaoli Li , Yuyou Yang , Fengjin Guo","doi":"10.1016/j.jtcme.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoarthritis (OA) etiology is multifactorial, and its prevalence is growing globally. The Gut microbiota shapes our immune system and impacts all aspects of health and disease. The idea of utilizing probiotics to treat different conditions prevails. Concerning musculoskeletal illness and health, current data lack the link to understand the interactions between the host and microbiome. We report that <em>S. thermophilus, L. pentosus</em> (as probiotics), and γ-aminobutyric acid (GABA) harbour against osteoarthritis in vivo and alleviate IL-1β induced changes in chondrocytes in vitro. We examined the increased GABA concentration in mice's serum and small intestine content followed by bacterial treatment. The treatment inhibited the catabolism of cartilage and rescued mice joints from degradation. Furthermore, the anabolic markers upregulated and decreased inflammatory markers in mice knee joints and chondrocytes. This study is the first to represent GABA's chondrogenic and chondroprotective effects on joints and human chondrocytes. This data provides a foundation for future studies to elucidate the role of GABA in regulating chondrocyte cell proliferation. These findings opened future horizons to understanding the gut-joint axis and OA treatment. Thus, probiotic/GABA therapy shields OA joints in mice and could at least serve as adjuvant therapy to treat osteoarthritis.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225411023000743/pdfft?md5=17795c8fb1abc93eb8a29e28722a4a35&pid=1-s2.0-S2225411023000743-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225411023000743","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) etiology is multifactorial, and its prevalence is growing globally. The Gut microbiota shapes our immune system and impacts all aspects of health and disease. The idea of utilizing probiotics to treat different conditions prevails. Concerning musculoskeletal illness and health, current data lack the link to understand the interactions between the host and microbiome. We report that S. thermophilus, L. pentosus (as probiotics), and γ-aminobutyric acid (GABA) harbour against osteoarthritis in vivo and alleviate IL-1β induced changes in chondrocytes in vitro. We examined the increased GABA concentration in mice's serum and small intestine content followed by bacterial treatment. The treatment inhibited the catabolism of cartilage and rescued mice joints from degradation. Furthermore, the anabolic markers upregulated and decreased inflammatory markers in mice knee joints and chondrocytes. This study is the first to represent GABA's chondrogenic and chondroprotective effects on joints and human chondrocytes. This data provides a foundation for future studies to elucidate the role of GABA in regulating chondrocyte cell proliferation. These findings opened future horizons to understanding the gut-joint axis and OA treatment. Thus, probiotic/GABA therapy shields OA joints in mice and could at least serve as adjuvant therapy to treat osteoarthritis.