Minimax boundary estimation and estimation with boundary

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eddie Aamari, C. Aaron, Clément Levrard
{"title":"Minimax boundary estimation and estimation with boundary","authors":"Eddie Aamari, C. Aaron, Clément Levrard","doi":"10.3150/23-bej1585","DOIUrl":null,"url":null,"abstract":"We derive non-asymptotic minimax bounds for the Hausdorff estimation of $d$-dimensional submanifolds $M \\subset \\mathbb{R}^D$ with (possibly) non-empty boundary $\\partial M$. The model reunites and extends the most prevalent $\\mathcal{C}^2$-type set estimation models: manifolds without boundary, and full-dimensional domains. We consider both the estimation of the manifold $M$ itself and that of its boundary $\\partial M$ if non-empty. Given $n$ samples, the minimax rates are of order $O\\bigl((\\log n/n)^{2/d}\\bigr)$ if $\\partial M = \\emptyset$ and $O\\bigl((\\log n/n)^{2/(d+1)}\\bigr)$ if $\\partial M \\neq \\emptyset$, up to logarithmic factors. In the process, we develop a Voronoi-based procedure that allows to identify enough points $O\\bigl((\\log n/n)^{2/(d+1)}\\bigr)$-close to $\\partial M$ for reconstructing it.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/23-bej1585","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

We derive non-asymptotic minimax bounds for the Hausdorff estimation of $d$-dimensional submanifolds $M \subset \mathbb{R}^D$ with (possibly) non-empty boundary $\partial M$. The model reunites and extends the most prevalent $\mathcal{C}^2$-type set estimation models: manifolds without boundary, and full-dimensional domains. We consider both the estimation of the manifold $M$ itself and that of its boundary $\partial M$ if non-empty. Given $n$ samples, the minimax rates are of order $O\bigl((\log n/n)^{2/d}\bigr)$ if $\partial M = \emptyset$ and $O\bigl((\log n/n)^{2/(d+1)}\bigr)$ if $\partial M \neq \emptyset$, up to logarithmic factors. In the process, we develop a Voronoi-based procedure that allows to identify enough points $O\bigl((\log n/n)^{2/(d+1)}\bigr)$-close to $\partial M$ for reconstructing it.
Minimax边界估计和带边界估计
我们导出了具有(可能)非空边界$\partial M$的$d$维子流形$M\subet\mathbb{R}^d$的Hausdorff估计的非渐近极大极小界。该模型重新组合并扩展了最流行的$\mathcal{C}^2$型集合估计模型:无边界流形和全维域。我们同时考虑流形$M$本身的估计和它的边界$\部分M$的估计,如果不是空的。给定$n$个样本,如果$\partial M=\pemptyset$,则最小最大速率为$O\bigl((\log n/n)^{2/d}\bigr)$,如果$\partial M\neq\pemptyet$,则为$O\bigl((\logn/n)^{2/(d+1)}\big)$,直至对数因子。在此过程中,我们开发了一个基于Voronoi的过程,该过程允许识别足够多的点$O\bigl((\log n/n)^{2/(d+1)}\bigr)$-接近$\partial M$来重建它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信