Yaqian Ren, Yanlong Kong, Yonghui Huang, Shu Bie, Zhonghe Pang, Jichao He, Wei Yi, Bin He, Jiyang Wang
{"title":"Operational strategies to alleviate thermal impacts of the large-scale borehole heat exchanger array in Beijing Daxing Airport","authors":"Yaqian Ren, Yanlong Kong, Yonghui Huang, Shu Bie, Zhonghe Pang, Jichao He, Wei Yi, Bin He, Jiyang Wang","doi":"10.1186/s40517-023-00259-1","DOIUrl":null,"url":null,"abstract":"<div><p>Large-scale ground source heat pump (GSHP) systems are increasingly used for space heating and cooling. In comparison with smaller ones, large GSHP systems are often coupled with much more borehole heat exchangers (BHEs). Because of the intense thermal interactions between BHEs, they are more susceptible to significant ground temperature changes. Meanwhile, they possess the advantage that their operational strategies can be applied with a high degree of freedom, which presents chances to alleviate intense thermal interactions. In this study, we used a new performance indicator to access the effectiveness of GSHP operational strategies on alleviating thermal anomalies. The Daxing Airport GSHP system, contains 10,497 BHEs and is the largest in the world; therefore, it was selected as the test case for performance enhancement through operational strategies. We established a 2D model to predict ground temperature changes during the 50-year operation of the BHEs. First, it was revealed that the most severe thermal anomalies in the study area mainly occurred both within and between the BHE arrays, which should be mitigated. To alleviate the thermal anomalies caused by the thermal interactions of BHEs, operational strategies were applied by adjusting the cooling/heating starting sequence, setting time-dependent thermal loads, and reallocating thermal loads according to the position of the BHEs. Our study demonstrates that only the operation strategy that adjusts the cooling/heating starting sequence is beneficial for different BHE layouts, while the operational strategy that reallocates the thermal loads depending on BHEs position may be only effective for specific BHE layouts. In addition, our new performance indicator can be used to evaluate the effectiveness of the operational strategies and determine the spacing of adjacent BHE arrays. Therefore, it benefits the operation management of BHE array and design of BHE layout, and further guarantees the sustainable operation of the GSHP system.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00259-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00259-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale ground source heat pump (GSHP) systems are increasingly used for space heating and cooling. In comparison with smaller ones, large GSHP systems are often coupled with much more borehole heat exchangers (BHEs). Because of the intense thermal interactions between BHEs, they are more susceptible to significant ground temperature changes. Meanwhile, they possess the advantage that their operational strategies can be applied with a high degree of freedom, which presents chances to alleviate intense thermal interactions. In this study, we used a new performance indicator to access the effectiveness of GSHP operational strategies on alleviating thermal anomalies. The Daxing Airport GSHP system, contains 10,497 BHEs and is the largest in the world; therefore, it was selected as the test case for performance enhancement through operational strategies. We established a 2D model to predict ground temperature changes during the 50-year operation of the BHEs. First, it was revealed that the most severe thermal anomalies in the study area mainly occurred both within and between the BHE arrays, which should be mitigated. To alleviate the thermal anomalies caused by the thermal interactions of BHEs, operational strategies were applied by adjusting the cooling/heating starting sequence, setting time-dependent thermal loads, and reallocating thermal loads according to the position of the BHEs. Our study demonstrates that only the operation strategy that adjusts the cooling/heating starting sequence is beneficial for different BHE layouts, while the operational strategy that reallocates the thermal loads depending on BHEs position may be only effective for specific BHE layouts. In addition, our new performance indicator can be used to evaluate the effectiveness of the operational strategies and determine the spacing of adjacent BHE arrays. Therefore, it benefits the operation management of BHE array and design of BHE layout, and further guarantees the sustainable operation of the GSHP system.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.