High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses

IF 2.3 Q2 OPTICS
Daniel Holder, Artur Leis, M. Buser, R. Weber, T. Graf
{"title":"High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses","authors":"Daniel Holder, Artur Leis, M. Buser, R. Weber, T. Graf","doi":"10.1515/aot-2019-0065","DOIUrl":null,"url":null,"abstract":"Abstract Additively manufactured parts typically deviate to some extent from the targeted net shape and exhibit high surface roughness due to the size of the powder grains that determines the minimum thickness of the individual slices and due to partially molten powder grains adhering on the surface. Optical coherence tomography (OCT)-based measurements and closed-loop controlled ablation with ultrashort laser pulses were utilized for the precise positioning of the LPBF-generated aluminum parts and for post-processing by selective laser ablation of the excessive material. As a result, high-quality net shape geometries were achieved with surface roughness, and deviation from the targeted net shape geometry reduced by 67% and 63%, respectively.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"9 1","pages":"101 - 110"},"PeriodicalIF":2.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2019-0065","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2019-0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract Additively manufactured parts typically deviate to some extent from the targeted net shape and exhibit high surface roughness due to the size of the powder grains that determines the minimum thickness of the individual slices and due to partially molten powder grains adhering on the surface. Optical coherence tomography (OCT)-based measurements and closed-loop controlled ablation with ultrashort laser pulses were utilized for the precise positioning of the LPBF-generated aluminum parts and for post-processing by selective laser ablation of the excessive material. As a result, high-quality net shape geometries were achieved with surface roughness, and deviation from the targeted net shape geometry reduced by 67% and 63%, respectively.
使用超短激光脉冲闭环控制烧蚀增材制造零件的高质量净形状几何形状
由于粉末颗粒的大小决定了单个薄片的最小厚度,并且由于部分熔融的粉末颗粒粘附在表面上,增材制造的零件通常会在一定程度上偏离目标净形状,并表现出很高的表面粗糙度。基于光学相干层析成像(OCT)的测量和超短激光脉冲闭环控制烧蚀用于lpbf生成的铝部件的精确定位,并通过选择性激光烧蚀对过量材料进行后处理。结果,在具有表面粗糙度的情况下获得了高质量的净形状几何形状,与目标净形状几何形状的偏差分别减少了67%和63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
23
期刊介绍: Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信