{"title":"Funciones inducidas e inducibles entre hiperespacios","authors":"A. M. D. Oca","doi":"10.15381/PES.V21I2.15722","DOIUrl":null,"url":null,"abstract":"En este artículo consideramos H(X) un hiperespacio de un continuo X. Sea f : X → Y una función continua entre continuos, se considera a la función inducida H(f) : H(X) → H(Y ) dada por H(f)(A) = f(A), para todo A ϵ H(X). Por otro lado, si tenemos a la función continua H : H(X) → H(Y) y existe g : X → Y tal que H = H(f), decimos que H es inducible. Se presentan tres clases de funciones entre continuos y se estudia el siguiente problema: f pertenece a una clase si y sólo si la función inducida H(f) también pertenece a esa clase. Además, se presenta una caracterización para las funciones inducibles y con esto se muestra una aplicación a encajes ordenados.","PeriodicalId":33010,"journal":{"name":"Pesquimat","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquimat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15381/PES.V21I2.15722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
En este artículo consideramos H(X) un hiperespacio de un continuo X. Sea f : X → Y una función continua entre continuos, se considera a la función inducida H(f) : H(X) → H(Y ) dada por H(f)(A) = f(A), para todo A ϵ H(X). Por otro lado, si tenemos a la función continua H : H(X) → H(Y) y existe g : X → Y tal que H = H(f), decimos que H es inducible. Se presentan tres clases de funciones entre continuos y se estudia el siguiente problema: f pertenece a una clase si y sólo si la función inducida H(f) también pertenece a esa clase. Además, se presenta una caracterización para las funciones inducibles y con esto se muestra una aplicación a encajes ordenados.