Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Lingtao Zhang, Fan Liu, Yamei Jin, Shilin Wu, Xueming Xu, Na Yang
{"title":"Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods","authors":"Lingtao Zhang,&nbsp;Fan Liu,&nbsp;Yamei Jin,&nbsp;Shilin Wu,&nbsp;Xueming Xu,&nbsp;Na Yang","doi":"10.1007/s12393-022-09314-2","DOIUrl":null,"url":null,"abstract":"<div><p>As consumers increasingly prefer “all-natural” and healthy foods, there has been increasing demand for non-toxic, residual-free, and environmentally friendly food processing techniques. Researchers and developers have shown increasing interest in innovative electrical processing techniques for the treatment of foods. Among electrotechnologies, induced electric fields (IEF) demonstrates the potential advantages to food processing. It combined with thermal effect and non-thermal effect has been explored for sterilization, modification, and extraction of agro-food materials. It is a sister electrotechnology of ohmic heating, which does not require the use of electrodes. Despite valuable contributions to the literature, there still lack of knowledge regarding the application of IEF treatment to food products. It has proven effective in inactivating microorganisms and enzymes in foods, changing biomacromolecule contents, extracting active constituents, and enhancing chemical reactions. This paper provides an overview of current application of IEFs in the treatment of foods. Issues relevant to electric field processing (e.g., basic principles, formulas) are also examined as they affect IEF techniques. Future perspectives and challenges related to technological application of IEFs are outlined in an effort to fill research gaps. IEF processing is projected to become a key technology in the food industry.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"14 3","pages":"491 - 508"},"PeriodicalIF":5.3000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-022-09314-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As consumers increasingly prefer “all-natural” and healthy foods, there has been increasing demand for non-toxic, residual-free, and environmentally friendly food processing techniques. Researchers and developers have shown increasing interest in innovative electrical processing techniques for the treatment of foods. Among electrotechnologies, induced electric fields (IEF) demonstrates the potential advantages to food processing. It combined with thermal effect and non-thermal effect has been explored for sterilization, modification, and extraction of agro-food materials. It is a sister electrotechnology of ohmic heating, which does not require the use of electrodes. Despite valuable contributions to the literature, there still lack of knowledge regarding the application of IEF treatment to food products. It has proven effective in inactivating microorganisms and enzymes in foods, changing biomacromolecule contents, extracting active constituents, and enhancing chemical reactions. This paper provides an overview of current application of IEFs in the treatment of foods. Issues relevant to electric field processing (e.g., basic principles, formulas) are also examined as they affect IEF techniques. Future perspectives and challenges related to technological application of IEFs are outlined in an effort to fill research gaps. IEF processing is projected to become a key technology in the food industry.

Abstract Image

感应电场在食品处理中的应用现状及挑战
随着消费者越来越喜欢“全天然”和健康食品,对无毒、无残留、环保的食品加工技术的需求也越来越大。研究人员和开发人员对食品处理的创新电子处理技术越来越感兴趣。在电子技术中,感应电场(IEF)显示出在食品加工中的潜在优势。探索了热效应与非热效应相结合,用于农业食品原料的灭菌、改性和提取。它是欧姆加热的姊妹电工技术,不需要使用电极。尽管对文献做出了宝贵的贡献,但仍然缺乏关于IEF处理在食品中的应用的知识。它已被证明能有效地灭活食品中的微生物和酶,改变生物大分子的含量,提取有效成分,增强化学反应。本文综述了目前IEFs在食品处理中的应用。与电场处理有关的问题(例如,基本原理、公式)也会受到影响,因为它们会影响到IEF技术。为了填补研究空白,本文概述了与环境因子技术应用相关的未来前景和挑战。IEF加工有望成为食品工业的一项关键技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信