High-throughput microbead assay system with a portable, cost-effective Wi-Fi imaging module, and disposable multi-layered microfluidic cartridges for virus and microparticle detection, and tracking

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jorge Manrique Castro, Frank Sommerhage, Rishika Khanna, Andre Childs, David DeRoo, Swaminathan Rajaraman
{"title":"High-throughput microbead assay system with a portable, cost-effective Wi-Fi imaging module, and disposable multi-layered microfluidic cartridges for virus and microparticle detection, and tracking","authors":"Jorge Manrique Castro,&nbsp;Frank Sommerhage,&nbsp;Rishika Khanna,&nbsp;Andre Childs,&nbsp;David DeRoo,&nbsp;Swaminathan Rajaraman","doi":"10.1007/s10544-023-00661-3","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Kundu et al. 2018) it is possible to provide an affordable solution to both the problems of high-throughput devices and detection technologies. We present the development of a wireless, standalone device and disposable microfluidics chips that rapidly generate parallel readouts for selected, possible virus variants from a nasal or saliva sample, based on motorized and non-motorized microbeads detection, and imaging processing of the motion tracks of these beads in micrometers. Microbeads and SARS-CoV-2 COVID-19 Delta variant were tested as proof-of-concept for testing the microfluidic cartridges and wireless imaging module. The Microbead Assay (MA) system kit consists of a Wi-Fi readout module, a microfluidic chip, and a sample collection/processing sub-system. Here, we focus on the fabrication and characterization of the microfluidic chip to multiplex various micrometer-sized beads for economic, disposable, and simultaneous detection of up to six different viruses, microparticles or variants in a single test, and data collection using a commercially available, Wi-Fi-capable, and camera integrated device (Fig. 1).\n</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00661-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00661-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years biomedical scientific community has been working towards the development of high-throughput devices that allow a reliable, rapid and parallel detection of several strains of virus or microparticles simultaneously. One of the complexities of this problem lies on the rapid prototyping of new devices and wireless rapid detection of small particles and virus alike. By reducing the complexity of microfluidics microfabrication and using economic materials along with makerspace tools (Kundu et al. 2018) it is possible to provide an affordable solution to both the problems of high-throughput devices and detection technologies. We present the development of a wireless, standalone device and disposable microfluidics chips that rapidly generate parallel readouts for selected, possible virus variants from a nasal or saliva sample, based on motorized and non-motorized microbeads detection, and imaging processing of the motion tracks of these beads in micrometers. Microbeads and SARS-CoV-2 COVID-19 Delta variant were tested as proof-of-concept for testing the microfluidic cartridges and wireless imaging module. The Microbead Assay (MA) system kit consists of a Wi-Fi readout module, a microfluidic chip, and a sample collection/processing sub-system. Here, we focus on the fabrication and characterization of the microfluidic chip to multiplex various micrometer-sized beads for economic, disposable, and simultaneous detection of up to six different viruses, microparticles or variants in a single test, and data collection using a commercially available, Wi-Fi-capable, and camera integrated device (Fig. 1).

Abstract Image

高通量微珠检测系统具有便携式,具有成本效益的Wi-Fi成像模块,以及用于病毒和微粒检测和跟踪的一次性多层微流控墨盒
近年来,生物医学科学界一直致力于开发高通量设备,使其能够同时可靠、快速和平行地检测多种病毒株或微粒。这一问题的复杂性之一在于新设备的快速原型制作以及对小颗粒和病毒的无线快速检测。通过降低微流体微加工的复杂性,并使用经济材料以及制造商空间工具(Kundu et al. 2018),可以为高通量设备和检测技术的问题提供经济实惠的解决方案。我们提出了一种无线、独立设备和一次性微流控芯片的开发,基于电动和非电动微珠检测,以及这些微珠以微米为单位的运动轨迹的成像处理,可以快速地从鼻腔或唾液样本中产生选定的可能的病毒变体的并行读出。对微珠和SARS-CoV-2 COVID-19 δ变体进行了测试,作为测试微流体盒和无线成像模块的概念验证。Microbead Assay (MA)系统套件包括一个Wi-Fi读出模块、一个微流控芯片和一个样品采集/处理子系统。在这里,我们专注于微流控芯片的制造和表征,以复用各种微米大小的珠子,以便在一次测试中同时检测多达六种不同的病毒、微粒或变体,并使用市售的、具有wi - fi功能的和相机集成设备进行数据收集(图1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信