Jung-Hyeon Kim , Su-Rim Kim , Hyun-Jae Jo , Chan Young Yeo , Dong Jin Yeo , Kunhang Yun , Jeonghong Park , Jong-Yong Park
{"title":"Development of automatic gain-tuning algorithm for heading control using free-running test data","authors":"Jung-Hyeon Kim , Su-Rim Kim , Hyun-Jae Jo , Chan Young Yeo , Dong Jin Yeo , Kunhang Yun , Jeonghong Park , Jong-Yong Park","doi":"10.1016/j.ijnaoe.2023.100517","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes an automatic gain-tuning algorithm for ships. The proposed algorithm is designed to tune the gains of the ship controller automatically, rather than using trial and error. The forward speed and steering models were derived by linearizing and simplifying the 3-degrees of freedom (DOF) nonlinear equation of motion of the ship. The initial control gains were calculated using an error dynamics model constructed by combining the steering and system models of the controller. The maneuvering simulations and sensitivity analysis of the control performance at various control gains were performed for gain-tuning. System identification was conducted based on derived dynamics models and free-running test data. The tests verified that the gain-tuning algorithm corrects the gains more accurately and rapidly than trial and error. In addition, the algorithm reduced overshoot by 85% compared to the initial control gains.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"15 ","pages":"Article 100517"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678223000067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an automatic gain-tuning algorithm for ships. The proposed algorithm is designed to tune the gains of the ship controller automatically, rather than using trial and error. The forward speed and steering models were derived by linearizing and simplifying the 3-degrees of freedom (DOF) nonlinear equation of motion of the ship. The initial control gains were calculated using an error dynamics model constructed by combining the steering and system models of the controller. The maneuvering simulations and sensitivity analysis of the control performance at various control gains were performed for gain-tuning. System identification was conducted based on derived dynamics models and free-running test data. The tests verified that the gain-tuning algorithm corrects the gains more accurately and rapidly than trial and error. In addition, the algorithm reduced overshoot by 85% compared to the initial control gains.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.