𝔽p2-maximal curves with many automorphisms are Galois-covered by the Hermitian curve

IF 0.5 4区 数学 Q3 MATHEMATICS
D. Bartoli, M. Montanucci, F. Torres
{"title":"𝔽p2-maximal curves with many automorphisms are Galois-covered by the Hermitian curve","authors":"D. Bartoli, M. Montanucci, F. Torres","doi":"10.1515/advgeom-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\\mathcal{H}}_{72}}.$","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\mathcal{H}}_{72}}.$
𝔽具有许多自同构的p2极大曲线是Hermitian曲线覆盖的Galois
设为q2阶的有限域。有时Serre认为任何曲线𝔽-covered通过厄米曲线hq +1:yq+1=xq+x ${{\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x}^{q}}+x$也是𝔽-maximal。对于素数q,我们证明了每一条具有| Aut(∈)| > 84(g−1)的g≥2属的𝔽-maximal曲线x $\mathcal{x}$是被Hq+1覆盖的伽罗瓦。$ {{\ mathcal {H}} _ {q + 1}}。关于| Aut(∈)|的假设是尖锐的,因为存在一条对于g = 7属的q = 71且| Aut(∈)| = 84(7−1)的𝔽-maximal曲线x $\mathcal{x}$,该曲线不被厄米曲线H72所覆盖。$ {{\ mathcal {H}} _{72}}。美元
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信