{"title":"𝔽p2-maximal curves with many automorphisms are Galois-covered by the Hermitian curve","authors":"D. Bartoli, M. Montanucci, F. Torres","doi":"10.1515/advgeom-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\\mathcal{H}}_{72}}.$","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let 𝔽 be the finite field of order q2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x ${{\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\mathcal{x}$of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by Hq+1. ${{\mathcal{H}}_{q+1}}.$The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\mathcal{x}$for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H72. ${{\mathcal{H}}_{72}}.$
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.