Evaluations of uncertainties in simulations of propagation of ultrahigh-energy cosmic-ray nuclei derived from microscopic nuclear models

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
E. Kido , T. Inakura , M. Kimura , N. Kobayashi , S. Nagataki , N. Shimizu , A. Tamii , Y. Utsuno
{"title":"Evaluations of uncertainties in simulations of propagation of ultrahigh-energy cosmic-ray nuclei derived from microscopic nuclear models","authors":"E. Kido ,&nbsp;T. Inakura ,&nbsp;M. Kimura ,&nbsp;N. Kobayashi ,&nbsp;S. Nagataki ,&nbsp;N. Shimizu ,&nbsp;A. Tamii ,&nbsp;Y. Utsuno","doi":"10.1016/j.astropartphys.2023.102866","DOIUrl":null,"url":null,"abstract":"<div><p>Photodisintegration is a main energy loss process for ultrahigh-energy cosmic-ray (UHECR) nuclei in intergalactic space. Therefore, it is crucial to understand systematic uncertainty in photodisintegration when simulating the propagation of UHECR nuclei. In this work, we calculated the cross sections using the random phase approximation (RPA) of density functional theory (DFT), a microscopic nuclear model. We calculated the <span><math><mrow><mi>E</mi><mn>1</mn></mrow></math></span> strength of 29 nuclei using three different density functionals. We obtained the cross sections of photonuclear reactions, including photodisintegration, with the <span><math><mrow><mi>E</mi><mn>1</mn></mrow></math></span> strength. Then, we implemented the cross sections in the cosmic-ray propagation code CRPropa. We found that assuming certain astrophysical parameter values, the difference between UHECR energy spectrum predictions using the RPA calculation and the default photodisintegration model in CRPropa can be more than the statistical uncertainty of the spectrum. We also found that the differences between the RPA calculations and CRPropa default in certain astrophysical parameters obtained by a combined fit of UHECR energy spectrum and composition data assuming a phenomenological model of UHECR sources can be more than the uncertainty of the data.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"152 ","pages":"Article 102866"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092765052300052X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photodisintegration is a main energy loss process for ultrahigh-energy cosmic-ray (UHECR) nuclei in intergalactic space. Therefore, it is crucial to understand systematic uncertainty in photodisintegration when simulating the propagation of UHECR nuclei. In this work, we calculated the cross sections using the random phase approximation (RPA) of density functional theory (DFT), a microscopic nuclear model. We calculated the E1 strength of 29 nuclei using three different density functionals. We obtained the cross sections of photonuclear reactions, including photodisintegration, with the E1 strength. Then, we implemented the cross sections in the cosmic-ray propagation code CRPropa. We found that assuming certain astrophysical parameter values, the difference between UHECR energy spectrum predictions using the RPA calculation and the default photodisintegration model in CRPropa can be more than the statistical uncertainty of the spectrum. We also found that the differences between the RPA calculations and CRPropa default in certain astrophysical parameters obtained by a combined fit of UHECR energy spectrum and composition data assuming a phenomenological model of UHECR sources can be more than the uncertainty of the data.

基于微观核模型的超高能宇宙射线核传播模拟的不确定性评估
光衰变是星系间空间超高能宇宙射线(UHECR)核的主要能量损失过程。因此,在模拟UHECR核的传播时,理解光衰变的系统不确定性是至关重要的。在这项工作中,我们使用密度泛函理论(DFT)的随机相位近似(RPA)计算了微观核模型的截面。我们用三种不同的密度泛函计算了29个原子核的E1强度。我们得到了E1强度的光核反应的截面,包括光分解。然后,我们在宇宙射线传播代码CRPropa中实现了横截面。我们发现,假设一定的天体物理参数值,使用RPA计算的UHECR能谱预测与CRPropa中默认的光分解模型之间的差异可以超过光谱的统计不确定性。我们还发现,假设UHECR源的现象学模型,通过UHECR能谱和成分数据的组合拟合获得的某些天体物理参数,RPA计算与CRPropa默认值之间的差异可能超过数据的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信