A FUSION OF HAND-CRAFTED FEATURES AND DEEP NEURAL NETWORK FOR INDOOR SCENE CLASSIFICATION

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Basavaraj S. Anami, Chetan V. Sagarnal (Corresponding Author)
{"title":"A FUSION OF HAND-CRAFTED FEATURES AND DEEP NEURAL NETWORK FOR INDOOR SCENE CLASSIFICATION","authors":"Basavaraj S. Anami, Chetan V. Sagarnal (Corresponding Author)","doi":"10.22452/mjcs.vol36no2.5","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have proved to be the best choice left for image classification tasks. However, hand-crafted features cannot be ignored as these are the basic to conventional image processing. Hand-crafted features provide a priori information that often acts as the contemporary solution to CNN in image classification, and hence an attempt is made to fuse the two. This paper gives a feature fusion approach to combine CNN and hand-crafted features. The proposed methodology uses two stages, where the first stage comprises feature encoder that encodes non-normalized features of CNN, which utilizes edge, texture, and local features. The fusion of handcrafted features with CNN features is carried out in the second Hand-crafted crafted features are validated that helped CNN to perform better. Experimental results reveal that the proposed methodology improves over the original Efficient-Net(E) on the MIT-67 dataset and achieved an average accuracy of 93.87%. The results are compared with state-of-the-art methods.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol36no2.5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNN) have proved to be the best choice left for image classification tasks. However, hand-crafted features cannot be ignored as these are the basic to conventional image processing. Hand-crafted features provide a priori information that often acts as the contemporary solution to CNN in image classification, and hence an attempt is made to fuse the two. This paper gives a feature fusion approach to combine CNN and hand-crafted features. The proposed methodology uses two stages, where the first stage comprises feature encoder that encodes non-normalized features of CNN, which utilizes edge, texture, and local features. The fusion of handcrafted features with CNN features is carried out in the second Hand-crafted crafted features are validated that helped CNN to perform better. Experimental results reveal that the proposed methodology improves over the original Efficient-Net(E) on the MIT-67 dataset and achieved an average accuracy of 93.87%. The results are compared with state-of-the-art methods.
基于人工特征和深度神经网络的室内场景分类
卷积神经网络(CNN)已被证明是图像分类任务的最佳选择。然而,手工制作的特征是不能忽视的,因为它们是传统图像处理的基础。手工特征提供了先验信息,在图像分类中经常作为CNN的当代解决方案,因此尝试将两者融合。本文提出了一种特征融合方法,将CNN与手工特征相结合。所提出的方法分为两个阶段,其中第一阶段包括特征编码器,该编码器利用边缘、纹理和局部特征对CNN的非归一化特征进行编码。第二部分进行了手工特征与CNN特征的融合,验证了手工特征对CNN性能的提升。实验结果表明,该方法在MIT-67数据集上比原来的efficiency - net (E)方法有了很大的改进,平均准确率达到了93.87%。结果与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Malaysian Journal of Computer Science
Malaysian Journal of Computer Science COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
2.20
自引率
33.30%
发文量
35
审稿时长
7.5 months
期刊介绍: The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication.  The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信