Wen Sun , Jinjin Li , Zhaorong He , Xun Ge , Yidong Lin
{"title":"Well-graded polytomous knowledge structures","authors":"Wen Sun , Jinjin Li , Zhaorong He , Xun Ge , Yidong Lin","doi":"10.1016/j.jmp.2023.102770","DOIUrl":null,"url":null,"abstract":"<div><p>Heller (2021) and Stefanutti et al. (2020) provided the mathematical foundation for the generalization of knowledge structure theory (KST) to polytomous items. Based on their works, the well-gradedness can be extended to polytomous knowledge structures. We propose the concepts of discriminative polytomous knowledge structure and well-graded polytomous knowledge structure. Then we show that every well-graded polytomous knowledge structure is discriminative. The basis of any polytomous knowledge space is formed by the collection of all the atoms. We discuss the sufficient and necessary conditions of polytomous knowledge structures to be well-graded polytomous knowledge spaces. Moreover, we provide an example to illustrate that a well-graded polytomous knowledge space is not necessarily a polytomous closure space.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"114 ","pages":"Article 102770"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000263","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Heller (2021) and Stefanutti et al. (2020) provided the mathematical foundation for the generalization of knowledge structure theory (KST) to polytomous items. Based on their works, the well-gradedness can be extended to polytomous knowledge structures. We propose the concepts of discriminative polytomous knowledge structure and well-graded polytomous knowledge structure. Then we show that every well-graded polytomous knowledge structure is discriminative. The basis of any polytomous knowledge space is formed by the collection of all the atoms. We discuss the sufficient and necessary conditions of polytomous knowledge structures to be well-graded polytomous knowledge spaces. Moreover, we provide an example to illustrate that a well-graded polytomous knowledge space is not necessarily a polytomous closure space.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory