Marta Morana, Ross J. Angel, Matteo Alvaro, Boriana Mihailova
{"title":"High-temperature behavior of quartz-in-garnet system revealed by in situ Raman spectroscopy","authors":"Marta Morana, Ross J. Angel, Matteo Alvaro, Boriana Mihailova","doi":"10.1007/s00269-023-01246-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quartz is one of the most abundant minerals in the Earth crust and therefore quartz inclusions in garnet are of great interest for elastic geobarometry, an approach that exploits the elastic properties of the mineral pair to back-calculate the conditions of inclusion entrapment. However, the high-temperature behavior of quartz inclusions close to the <span>\\(\\alpha\\)</span>–<span>\\(\\beta\\)</span> transition boundary has not been studied experimentally. We have therefore performed in situ high-temperature Raman spectroscopy on a quartz-in-garnet system up to 1000 K, and have also collected an improved reference data set for the temperature dependence of the Raman scattering of free quartz. Our results show that the <span>\\(\\alpha\\)</span>-to-<span>\\(\\beta\\)</span> phase transition is hindered by the stress imposed by the host on the quartz inclusion, resulting in a thermosalient effect of the whole host-inclusion system or a mechanical cracking of the host mineral.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01246-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01246-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quartz is one of the most abundant minerals in the Earth crust and therefore quartz inclusions in garnet are of great interest for elastic geobarometry, an approach that exploits the elastic properties of the mineral pair to back-calculate the conditions of inclusion entrapment. However, the high-temperature behavior of quartz inclusions close to the \(\alpha\)–\(\beta\) transition boundary has not been studied experimentally. We have therefore performed in situ high-temperature Raman spectroscopy on a quartz-in-garnet system up to 1000 K, and have also collected an improved reference data set for the temperature dependence of the Raman scattering of free quartz. Our results show that the \(\alpha\)-to-\(\beta\) phase transition is hindered by the stress imposed by the host on the quartz inclusion, resulting in a thermosalient effect of the whole host-inclusion system or a mechanical cracking of the host mineral.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)