Physical Time-Varying Transfer Function as Generic Low-Overhead Power-SCA Countermeasure

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Archisman Ghosh;Debayan Das;Shreyas Sen
{"title":"Physical Time-Varying Transfer Function as Generic Low-Overhead Power-SCA Countermeasure","authors":"Archisman Ghosh;Debayan Das;Shreyas Sen","doi":"10.1109/OJCAS.2023.3302254","DOIUrl":null,"url":null,"abstract":"Mathematically secure cryptographic algorithms leak significant side-channel information through their power supplies when implemented on a physical platform. These side-channel leakages can be exploited by an attacker to extract the secret key of an embedded device. The existing state-of-the-art countermeasures mainly focus on power balancing, gate-level masking, or signal-to-noise (SNR) reduction using noise injection and signature attenuation, all of which suffer either from the limitations of high power/area overheads, throughput degradation or are not synthesizable. In this article, we propose a generic low-overhead digital-friendly power SCA countermeasure utilizing a physical Time-Varying Transfer Function (TVTF) by randomly shuffling distributed switched capacitors to significantly obfuscate the traces in the time domain. We evaluate our proposed technique utilizing a MATLAB-based system-level simulation. Finally, we implement a 65nm CMOS prototype IC and evaluate our technique against power side-channel attacks (SCA). System-level simulation results of the TVTF-AES show \n<inline-formula> <tex-math>$\\sim 5000\\times $ </tex-math></inline-formula>\n minimum traces to disclosure (MTD) improvement over the unprotected implementation with \n<inline-formula> <tex-math>$\\sim 1.25\\times $ </tex-math></inline-formula>\n power and \n<inline-formula> <tex-math>$\\sim 1.2\\times $ </tex-math></inline-formula>\n area overheads, and without any performance degradation. SCA evaluation with the prototype IC shows \n<inline-formula> <tex-math>$3.4M$ </tex-math></inline-formula>\n MTD which is \n<inline-formula> <tex-math>$500\\times $ </tex-math></inline-formula>\n greater than the unprotected solution.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10208218.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10208218/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Mathematically secure cryptographic algorithms leak significant side-channel information through their power supplies when implemented on a physical platform. These side-channel leakages can be exploited by an attacker to extract the secret key of an embedded device. The existing state-of-the-art countermeasures mainly focus on power balancing, gate-level masking, or signal-to-noise (SNR) reduction using noise injection and signature attenuation, all of which suffer either from the limitations of high power/area overheads, throughput degradation or are not synthesizable. In this article, we propose a generic low-overhead digital-friendly power SCA countermeasure utilizing a physical Time-Varying Transfer Function (TVTF) by randomly shuffling distributed switched capacitors to significantly obfuscate the traces in the time domain. We evaluate our proposed technique utilizing a MATLAB-based system-level simulation. Finally, we implement a 65nm CMOS prototype IC and evaluate our technique against power side-channel attacks (SCA). System-level simulation results of the TVTF-AES show $\sim 5000\times $ minimum traces to disclosure (MTD) improvement over the unprotected implementation with $\sim 1.25\times $ power and $\sim 1.2\times $ area overheads, and without any performance degradation. SCA evaluation with the prototype IC shows $3.4M$ MTD which is $500\times $ greater than the unprotected solution.
物理时变传递函数作为通用的低开销功率- sca对策
数学上安全的加密算法在物理平台上实现时,会通过其电源泄漏重要的侧信道信息。攻击者可以利用这些侧信道泄漏来提取嵌入式设备的密钥。现有的最先进的对策主要集中在功率平衡、门级屏蔽或使用噪声注入和特征衰减来降低信噪比(SNR),所有这些都受到高功率/面积开销、吞吐量下降或不可合成的限制。在本文中,我们提出了一种通用的低开销数字友好型功率SCA对策,利用物理时变传递函数(TVTF),通过随机变换分布式开关电容器来显著混淆时域中的走线。我们利用基于matlab的系统级仿真来评估我们提出的技术。最后,我们实现了一个65nm CMOS原型IC,并评估了我们的技术对抗功率侧信道攻击(SCA)。TVTF-AES的系统级仿真结果显示,与未受保护的实现相比,最小披露痕迹(MTD)改善了5000倍,功耗为1.25倍,面积开销为1.2倍,并且没有任何性能下降。使用原型IC的SCA评估显示,MTD为340万美元,比未受保护的解决方案高500倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信