The spectral eigenmatrix problems of planar self-affine measures with four digits

Pub Date : 2023-08-01 DOI:10.1017/S0013091523000469
Jingcheng Liu, Min-Wei Tang, Shan Wu
{"title":"The spectral eigenmatrix problems of planar self-affine measures with four digits","authors":"Jingcheng Liu, Min-Wei Tang, Shan Wu","doi":"10.1017/S0013091523000469","DOIUrl":null,"url":null,"abstract":"Abstract Given a Borel probability measure µ on $\\mathbb{R}^n$ and a real matrix $R\\in M_n(\\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set $\\Lambda\\subset \\mathbb{R}^n$ such that the sets $E_\\Lambda=\\big\\{{\\rm e}^{2\\pi i \\langle\\lambda,x\\rangle}:\\lambda\\in \\Lambda\\big\\}$ and $E_{R\\Lambda}=\\big\\{{\\rm e}^{2\\pi i \\langle R\\lambda,x\\rangle}:\\lambda\\in \\Lambda\\big\\}$ are both orthonormal bases for the Hilbert space $L^2(\\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure $\\mu_{M,D}$ generated by an expanding integer matrix $M\\in M_2(2\\mathbb{Z})$ and the four-elements digit set $D = \\{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of $\\mu_{M,D}$ are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Given a Borel probability measure µ on $\mathbb{R}^n$ and a real matrix $R\in M_n(\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set $\Lambda\subset \mathbb{R}^n$ such that the sets $E_\Lambda=\big\{{\rm e}^{2\pi i \langle\lambda,x\rangle}:\lambda\in \Lambda\big\}$ and $E_{R\Lambda}=\big\{{\rm e}^{2\pi i \langle R\lambda,x\rangle}:\lambda\in \Lambda\big\}$ are both orthonormal bases for the Hilbert space $L^2(\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure $\mu_{M,D}$ generated by an expanding integer matrix $M\in M_2(2\mathbb{Z})$ and the four-elements digit set $D = \{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of $\mu_{M,D}$ are given.
分享
查看原文
平面四位数自仿射测度的谱特征矩阵问题
摘要给定$\mathbb{R}^n$上的Borel概率测度µ和M_n(\mathbb{R})$中的实矩阵$R\。我们称R为测度µ的谱本征矩阵,如果存在可数集$\Lambda\subet\mathbb{R}^n$,使得集合$E_\Lambda=\big\{\rme}^{2\pi i\langle\Lambda,x\langle}:\Lambda\in\Lambda\big\}$和$E_ \mu)$。本文研究了平面自仿射测度$mu_{M,D}$的谱本征矩阵的结构,该测度是由M_2(2\mathb{Z})$中的一个展开整数矩阵$M和四元数字集$D={(0,0)^t,(1,0)^ t,(0,1)^ t和(-1,-1)^ t}$生成的。给出了R为$\mu_{M,D}$的谱本征矩阵的一些充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信