{"title":"The spectral eigenmatrix problems of planar self-affine measures with four digits","authors":"Jingcheng Liu, Min-Wei Tang, Shan Wu","doi":"10.1017/S0013091523000469","DOIUrl":null,"url":null,"abstract":"Abstract Given a Borel probability measure µ on $\\mathbb{R}^n$ and a real matrix $R\\in M_n(\\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set $\\Lambda\\subset \\mathbb{R}^n$ such that the sets $E_\\Lambda=\\big\\{{\\rm e}^{2\\pi i \\langle\\lambda,x\\rangle}:\\lambda\\in \\Lambda\\big\\}$ and $E_{R\\Lambda}=\\big\\{{\\rm e}^{2\\pi i \\langle R\\lambda,x\\rangle}:\\lambda\\in \\Lambda\\big\\}$ are both orthonormal bases for the Hilbert space $L^2(\\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure $\\mu_{M,D}$ generated by an expanding integer matrix $M\\in M_2(2\\mathbb{Z})$ and the four-elements digit set $D = \\{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of $\\mu_{M,D}$ are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Given a Borel probability measure µ on $\mathbb{R}^n$ and a real matrix $R\in M_n(\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set $\Lambda\subset \mathbb{R}^n$ such that the sets $E_\Lambda=\big\{{\rm e}^{2\pi i \langle\lambda,x\rangle}:\lambda\in \Lambda\big\}$ and $E_{R\Lambda}=\big\{{\rm e}^{2\pi i \langle R\lambda,x\rangle}:\lambda\in \Lambda\big\}$ are both orthonormal bases for the Hilbert space $L^2(\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure $\mu_{M,D}$ generated by an expanding integer matrix $M\in M_2(2\mathbb{Z})$ and the four-elements digit set $D = \{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of $\mu_{M,D}$ are given.