{"title":"Pushing the limits of luminescence thermometry: probing the temperature of proteins in cells","authors":"Glauco S. Maciel","doi":"10.1007/s10867-021-09600-w","DOIUrl":null,"url":null,"abstract":"<div><p>Proteins are involved in numerous cellular activities such as transport and catalysis. Misfolding during biosynthesis and malfunctioning as a molecular machine may lead to physiological disorders and metabolic problems. Protein folding and mechanical work may be viewed as thermodynamic energetically favorable processes in which stochastic nonequilibrium intermediate states may be present with conditions such as thermal fluctuations. In my opinion, measuring those thermal fluctuations may be a way to access the energy exchange between the protein and the physiological environment and to better understand how those nonequilibrium states may influence the misfolding/folding process and the efficiency of the molecular engine cycle. Here, I discuss luminescence thermometry as a possible way to measure those temperature fluctuations from a single-molecule experimental perspective with its current technical limitations and challenges.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09600-w.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09600-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
Proteins are involved in numerous cellular activities such as transport and catalysis. Misfolding during biosynthesis and malfunctioning as a molecular machine may lead to physiological disorders and metabolic problems. Protein folding and mechanical work may be viewed as thermodynamic energetically favorable processes in which stochastic nonequilibrium intermediate states may be present with conditions such as thermal fluctuations. In my opinion, measuring those thermal fluctuations may be a way to access the energy exchange between the protein and the physiological environment and to better understand how those nonequilibrium states may influence the misfolding/folding process and the efficiency of the molecular engine cycle. Here, I discuss luminescence thermometry as a possible way to measure those temperature fluctuations from a single-molecule experimental perspective with its current technical limitations and challenges.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.