E. Alp, T. Çırak, M. Demirbilek, M. Türk, Eylem Güven
{"title":"Targeted delivery of etoposide to osteosarcoma cells using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles","authors":"E. Alp, T. Çırak, M. Demirbilek, M. Türk, Eylem Güven","doi":"10.3906/BIY-1612-17","DOIUrl":null,"url":null,"abstract":"Folic acid (FA)-functionalized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles were prepared to enhance the delivery efficiency of the anticancer drug etoposide for the clinical treatment of osteosarcoma. PHBV nanoparticles were synthesized by emulsification/solvent evaporation technique and obtained in the size range of 200-250 nm and zeta potential range of -21 and -27 mV. Encapsulation efficiency and in vitro drug release were studied. The cytotoxic, apoptotic, and necrotic effects of PHBV nanoparticles were also investigated using Saos-2 osteosarcoma cells. The results obtained in this study demonstrate that etoposide-loaded and FA-functionalized PHBV nanoparticles can be successfully used for targeted treatment of osteosarcoma.","PeriodicalId":23358,"journal":{"name":"Turkish Journal of Biology","volume":"41 1","pages":"719-733"},"PeriodicalIF":1.1000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/BIY-1612-17","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3906/BIY-1612-17","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Folic acid (FA)-functionalized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles were prepared to enhance the delivery efficiency of the anticancer drug etoposide for the clinical treatment of osteosarcoma. PHBV nanoparticles were synthesized by emulsification/solvent evaporation technique and obtained in the size range of 200-250 nm and zeta potential range of -21 and -27 mV. Encapsulation efficiency and in vitro drug release were studied. The cytotoxic, apoptotic, and necrotic effects of PHBV nanoparticles were also investigated using Saos-2 osteosarcoma cells. The results obtained in this study demonstrate that etoposide-loaded and FA-functionalized PHBV nanoparticles can be successfully used for targeted treatment of osteosarcoma.
期刊介绍:
The Turkish Journal of Biology is published electronically 6 times a year by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts concerning all kinds of biological
processes including biochemistry and biosynthesis, physiology and metabolism, molecular genetics, molecular biology,
genomics, proteomics, molecular farming, biotechnology/genetic transformation, nanobiotechnology, bioinformatics
and systems biology, cell and developmental biology, stem cell biology, and reproductive biology. Contribution is open
to researchers of all nationalities.