{"title":"Design and Implementation of a Novel Radar Cross Section Reduction Metasurface Covering 12.5-17.4 GHz and 20.5-36.2 GHz","authors":"Mei-Lin Yu, Xi Hou, Yong-Hong Zhou","doi":"10.1155/2023/4859324","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Based on the theory of polarization conversion, this paper designs and implements two electromagnetic units with a 180-degree reflection phase difference in the range of 10-40 GHz. By coding and optimizing the spatial arrangement of the two basic units to obtain a metasurface, which makes the incident electromagnetic waves reflect diffusely, the energy in a single beam direction is reduced to realize the reduction of the radar cross section (RCS). The full wave simulated and experimental results of the reduction of the RCS of the metasurface have been presented. The RCS of the proposed metasurface can be reduced by more than 10 dB in the two broadband bands of 12.5-17.4 GHz and 20.5-36.2 GHz, and the maximum reduction can reach 26 dB, compared with a metallic surface of the same size. In addition, the optimized metasurface can also maintain a good reduction effect under oblique incident wave directions of 30, 45, 60, and 70 degrees. A very good agreement between simulation and measurement results is observed.</p>\n </div>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2023 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/4859324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/4859324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the theory of polarization conversion, this paper designs and implements two electromagnetic units with a 180-degree reflection phase difference in the range of 10-40 GHz. By coding and optimizing the spatial arrangement of the two basic units to obtain a metasurface, which makes the incident electromagnetic waves reflect diffusely, the energy in a single beam direction is reduced to realize the reduction of the radar cross section (RCS). The full wave simulated and experimental results of the reduction of the RCS of the metasurface have been presented. The RCS of the proposed metasurface can be reduced by more than 10 dB in the two broadband bands of 12.5-17.4 GHz and 20.5-36.2 GHz, and the maximum reduction can reach 26 dB, compared with a metallic surface of the same size. In addition, the optimized metasurface can also maintain a good reduction effect under oblique incident wave directions of 30, 45, 60, and 70 degrees. A very good agreement between simulation and measurement results is observed.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.