William L. Peirson , John H. Harris , Iain M. Suthers , Maryam Farzadkhoo , Richard T Kingsford , Stefan Felder
{"title":"Impacts on fish transported in tube fishways","authors":"William L. Peirson , John H. Harris , Iain M. Suthers , Maryam Farzadkhoo , Richard T Kingsford , Stefan Felder","doi":"10.1016/j.jher.2022.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental data and numerical predictions of steady and unsteady flow in a 4 m high, 86 mm internal diameter tube fishway were compared quantitatively, and reflected expected uncertainties characteristic of the experiments and flow hydraulics. We then measured the response of a neutrally-buoyant fluid sensor and the behaviour of live fish transported vertically within the tube fishway. Ten repeat tests using the sensor and tests with seventy individual live fish demonstrated transport with 100% reliability. No ill effects were observed over a post-test monitoring period for two species of Australian native fish (Australian bass (<em>Percalates novemaculeata</em>) and Silver perch (<span><em>Bidyanus bidyanus</em></span>)) or as a function of size of the Silver perch that can be related to their passage through the fishway. There may have been temporary bruising of a few of the largest Silver perch tested. The largest Silver perch averaged 137 mm in length. The spatial distributions of the inert sensor and fish relative to the moving front during the transport process were quantified. Consequently, the volumes of water required during each operational cycle to ensure reliable delivery of fish over vertical distances less than 4 m were determined. The sensor measurements indicated negligible interactions with straight pipe walls but exposure to significant accelerations at sharp bends. Further experiments with live fish are required to quantify the possible adverse effects of alternative pipe transition designs on animals transported through them. Safe transport of fish up to a fish length/tube fishway delivery diameter ratio of 1.6 is demonstrated.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"42 ","pages":"Pages 1-11"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000181","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Experimental data and numerical predictions of steady and unsteady flow in a 4 m high, 86 mm internal diameter tube fishway were compared quantitatively, and reflected expected uncertainties characteristic of the experiments and flow hydraulics. We then measured the response of a neutrally-buoyant fluid sensor and the behaviour of live fish transported vertically within the tube fishway. Ten repeat tests using the sensor and tests with seventy individual live fish demonstrated transport with 100% reliability. No ill effects were observed over a post-test monitoring period for two species of Australian native fish (Australian bass (Percalates novemaculeata) and Silver perch (Bidyanus bidyanus)) or as a function of size of the Silver perch that can be related to their passage through the fishway. There may have been temporary bruising of a few of the largest Silver perch tested. The largest Silver perch averaged 137 mm in length. The spatial distributions of the inert sensor and fish relative to the moving front during the transport process were quantified. Consequently, the volumes of water required during each operational cycle to ensure reliable delivery of fish over vertical distances less than 4 m were determined. The sensor measurements indicated negligible interactions with straight pipe walls but exposure to significant accelerations at sharp bends. Further experiments with live fish are required to quantify the possible adverse effects of alternative pipe transition designs on animals transported through them. Safe transport of fish up to a fish length/tube fishway delivery diameter ratio of 1.6 is demonstrated.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.