A. Rynda, V. Olyushin, D. M. Rostovtsev, Y. Zabrodskaya, G. V. Papayan
{"title":"Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma","authors":"A. Rynda, V. Olyushin, D. M. Rostovtsev, Y. Zabrodskaya, G. V. Papayan","doi":"10.24931/2413-9432-2021-10-4-35-43","DOIUrl":null,"url":null,"abstract":"Intraoperative fluorescence diagnostics of high-grade gliomas is widely used in neurosurgical practice. This work analyzes the possibilities of fluorescence diagnostics for low-grade gliomas (LGG) using chlorin e6 photosensitizer. The study included patients with newly diagnosed LGG, for whom chlorin e6 was used for intraoperative fluorescence control at a dose of 1 mg/kg. During the operation, the fluorescence intensity of various areas of the putative tumor tissue was analyzed using the RSS Cam – Endo 1.4.313 software. Tissue samples with various degrees of fluorescence intensity were compared with the results of their histopathological analysis (WHO tumor diagnosis, Ki-67 index, P53, VEGF). Fluorescence was detected in more than half of the cases, but in most cases had a focal character and low fluorescence intensity. The fluorescence intensity directly correlated with the data of histopathological examination of tumor tissues (Ki-67 index (p=0.002), expression of P53 (p=0.0015) and VEGF (p=0.001)). The sensitivity of the method for LGG surgery was 72%, the specificity was 56,7%. Intraoperative fluorescence diagnostics with chlorin e6 can be used in LGG surgery, especially to visualize intratumoral areas with a higher degree of anaplasia.","PeriodicalId":37713,"journal":{"name":"Biomedical Photonics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24931/2413-9432-2021-10-4-35-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
Abstract
Intraoperative fluorescence diagnostics of high-grade gliomas is widely used in neurosurgical practice. This work analyzes the possibilities of fluorescence diagnostics for low-grade gliomas (LGG) using chlorin e6 photosensitizer. The study included patients with newly diagnosed LGG, for whom chlorin e6 was used for intraoperative fluorescence control at a dose of 1 mg/kg. During the operation, the fluorescence intensity of various areas of the putative tumor tissue was analyzed using the RSS Cam – Endo 1.4.313 software. Tissue samples with various degrees of fluorescence intensity were compared with the results of their histopathological analysis (WHO tumor diagnosis, Ki-67 index, P53, VEGF). Fluorescence was detected in more than half of the cases, but in most cases had a focal character and low fluorescence intensity. The fluorescence intensity directly correlated with the data of histopathological examination of tumor tissues (Ki-67 index (p=0.002), expression of P53 (p=0.0015) and VEGF (p=0.001)). The sensitivity of the method for LGG surgery was 72%, the specificity was 56,7%. Intraoperative fluorescence diagnostics with chlorin e6 can be used in LGG surgery, especially to visualize intratumoral areas with a higher degree of anaplasia.
期刊介绍:
The main goal of the journal – to promote the development of Russian biomedical photonics and implementation of its advances into medical practice. The primary objectives: - Presentation of up-to-date results of scientific and in research and scientific and practical (clinical and experimental) activity in the field of biomedical photonics. - Development of united Russian media for integration of knowledge and experience of scientists and practitioners in this field. - Distribution of best practices in laser medicine to regions. - Keeping the clinicians informed about new methods and devices for laser medicine - Approval of investigations of Ph.D candidates and applicants.