Designing and Analyzing Multistable Mechanisms Using Quadrilateral Boundary Rigid Origami

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL
Mun-jae Lee, Yuki Miyajima, Tomohiro Tachi
{"title":"Designing and Analyzing Multistable Mechanisms Using Quadrilateral Boundary Rigid Origami","authors":"Mun-jae Lee, Yuki Miyajima, Tomohiro Tachi","doi":"10.1115/1.4062132","DOIUrl":null,"url":null,"abstract":"\n Multistable origami and its snapping behaviors between the folded states have attracted scientists' and engineers' attention as the building block for the design of mechanical devices and metamaterials. We propose a novel method for designing origami-based multistable structures, by which we mean (1) to obtain the prescribed overall motion and (2) to control the stiffness of snapping provided by the elastic strain. We solve this design problem by first representing the desired motion with linkage structures with quadrilateral holes, called the frames, and then filling the frames with origami modules, called quadrilateral boundary modules. By introducing an intentional incompatibility between the motions of the frames and the modules, we design the snapping behavior that follows the linkage motion. We provide the representation model to evaluate the incompatibility and propose an optimization-based framework for the design. We also validate our design applied to a Sarrus-linkage through bar-and-hinge analysis and experiments using physical prototypes.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062132","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multistable origami and its snapping behaviors between the folded states have attracted scientists' and engineers' attention as the building block for the design of mechanical devices and metamaterials. We propose a novel method for designing origami-based multistable structures, by which we mean (1) to obtain the prescribed overall motion and (2) to control the stiffness of snapping provided by the elastic strain. We solve this design problem by first representing the desired motion with linkage structures with quadrilateral holes, called the frames, and then filling the frames with origami modules, called quadrilateral boundary modules. By introducing an intentional incompatibility between the motions of the frames and the modules, we design the snapping behavior that follows the linkage motion. We provide the representation model to evaluate the incompatibility and propose an optimization-based framework for the design. We also validate our design applied to a Sarrus-linkage through bar-and-hinge analysis and experiments using physical prototypes.
基于四边形边界刚性折纸的多稳定机构设计与分析
多稳态折纸及其在折叠状态之间的断裂行为作为机械设备和超材料设计的基石,吸引了科学家和工程师的注意。我们提出了一种设计基于折纸的多稳态结构的新方法,我们的意思是(1)获得规定的整体运动,(2)控制弹性应变提供的卡扣刚度。我们解决这个设计问题的方法是,首先用带有四边形孔的连杆结构表示所需的运动,称为框架,然后用折纸模块填充框架,称为四边形边界模块。通过在框架和模块的运动之间引入有意的不兼容性,我们设计了连杆运动之后的捕捉行为。我们提供了表示模型来评估不兼容性,并提出了一个基于优化的设计框架。我们还通过杆和铰链分析以及使用物理原型的实验验证了我们的设计应用于Sarrus连杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信