{"title":"MODELING THE EFFECTS OF INSECTICIDES ON CROP PRODUCTION IN THE PRESENCE OF INSECT POPULATION","authors":"A. Misra, A. Yadav","doi":"10.1142/s0218339023500031","DOIUrl":null,"url":null,"abstract":"In this research work, a nonlinear mathematical model is proposed and analyzed to study the adverse effects of insects on agricultural productivity by controlling the insect population using insecticides. In the model formulation, it is assumed that agricultural crops grow logistically and the growth rate of insects wholly depends on agricultural crops with Holling type-II functional response. It is further assumed that insects uptake insecticides; thus, the amount of insecticides decreases at a rate proportional to its amount and the density of insect population, and the growth rate of insect population decrease in the same proportion. The feasibility of all non-negative equilibria and their stability properties are discussed. Stability analysis specifies that agricultural crop consumption rate destabilizes the system; however, the spraying rate of insecticides stabilizes the system. The conditions for the existence of pitchfork and Hopf-bifurcation are derived. Considering the spraying rate of insecticides as time-dependent, we have also discussed the optimal control strategy to minimize both insect density and the associated cost. The numerical simulation validates the analytical findings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this research work, a nonlinear mathematical model is proposed and analyzed to study the adverse effects of insects on agricultural productivity by controlling the insect population using insecticides. In the model formulation, it is assumed that agricultural crops grow logistically and the growth rate of insects wholly depends on agricultural crops with Holling type-II functional response. It is further assumed that insects uptake insecticides; thus, the amount of insecticides decreases at a rate proportional to its amount and the density of insect population, and the growth rate of insect population decrease in the same proportion. The feasibility of all non-negative equilibria and their stability properties are discussed. Stability analysis specifies that agricultural crop consumption rate destabilizes the system; however, the spraying rate of insecticides stabilizes the system. The conditions for the existence of pitchfork and Hopf-bifurcation are derived. Considering the spraying rate of insecticides as time-dependent, we have also discussed the optimal control strategy to minimize both insect density and the associated cost. The numerical simulation validates the analytical findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.